【LOJ】#2035. 「SDOI2016」征途
题解
有人管它叫带权二分,有人管它叫dp凸优化,有人管它叫wqs二分……
延伸出来还有zgl分治,xjp¥!%#!@#¥!#
当我没说
我们拆个式子,很容易发现所求的就是
\(m\sum_{i = 1}^{m}s_{i}^2 - sum^{2}\)
然后去掉常数我们只要求\(\sum_{i = 1}^{m}s_{i}^2\)的最小值
然而,我们需要m个?
我们发现,这个东西随着选的个数增多,越来越少,并且少得越来越慢(斜率变大,斜率是负的!)
我们二分最后一次的斜率,选一次减少q,最后能取到的最小值用了几天,如果恰好等于m那么就是我们需要的,这个dp显然就是用斜率优化一下就OK了
当然,我们很可能出现,m = 4,前一个二分到最小值天数为3,再 + 1就变成最小值天数为5了= =,事实上二分的边界再多一个左右斜率相等就行了
代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 3005
#define RG register
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,que[MAXN],ql,qr,cnt[MAXN];
int64 S[MAXN],dp[MAXN],V,X[MAXN],Y[MAXN];
int calc(int a,int b) {
return dp[a] + (S[b] - S[a]) * (S[b] - S[a]) - V;
}
bool slope(int a,int b,int c) {
return (X[c] - X[a]) * (Y[b] - Y[a]) - (X[b] - X[a]) * (Y[c] - Y[a]) >= 0;
}
int Check(int64 mid) {
V = mid;
ql = 1,qr = 1;
cnt[0] = 0;dp[0] = 0;
que[1] = 0;
for(int i = 1 ; i <= N ; ++i) {
while(ql < qr) {
if(calc(que[ql],i) > calc(que[ql + 1],i)) ++ql;
else break;
}
dp[i] = calc(que[ql],i);cnt[i] = cnt[que[ql]] + 1;
X[i] = S[i];Y[i] = dp[i] + S[i] * S[i];
while(ql < qr) {
if(slope(que[qr - 1],que[qr],i)) --qr;
else break;
}
que[++qr] = i;
}
return cnt[N];
}
void Solve() {
read(N);read(M);
for(int i = 1 ; i <= N ; ++i) read(S[i]);
for(int i = 1 ; i <= N ; ++i) S[i] += S[i - 1];
int64 L = -1000000000,R = 1000000000;
while(L <= R) {
int64 MID = (L + R + 1) >> 1;
int x = Check(MID);
if(x == M || L == R) {
int64 ans = M * (dp[N] + MID * M) - S[N] * S[N];
out(ans);enter;return;
}
if(x > M) R = MID - 1;
else L = MID;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【LOJ】#2035. 「SDOI2016」征途的更多相关文章
- [LOJ 2070] 「SDOI2016」平凡的骰子
[LOJ 2070] 「SDOI2016」平凡的骰子 [题目链接] 链接 [题解] 原题求的是球面面积 可以理解为首先求多面体重心,然后算球面多边形的面积 求重心需要将多面体进行四面体剖分,从而计算出 ...
- 「SDOI2016」征途 题解
「SDOI2016」征途 先浅浅复制一个方差 显然dp,可以搞一个 \(dp[i][j]\)为前i段路程j天到达的最小方差 开始暴力转移 \(dp[i][j]=min(dp[k][j-1]+?)(j- ...
- 「SDOI2016」征途
征途 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成\(n\)段,相邻两段路的分界点设有休息站. Pine计划用\(m\)天到达T地.除第\(m\)天外,每一天晚上Pine都必须在休息 ...
- LOJ#2070. 「SDOI2016」平凡的骰子(计算几何)
题面 传送门 做一道题学一堆东西不管什么时候都是美好的体验呢-- 前置芝士 混合积 对于三个三维向量\(a,b,c\),定义它们的混合积为\((a\times b)\cdot c\),其中$\time ...
- loj2035 「SDOI2016」征途
学了斜率优化这题就能一气呵成地做出来啦qwqqwq #include <iostream> #include <cstdio> using namespace std; typ ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
随机推荐
- Showbo.js弹窗实现(jquery)
一.搭建环境 下载showBo.js和showBo.css 下载链接:https://pan.baidu.com/s/1iUUlKXFNXCBEvBnds4ECIA 密码:its4 显示效果图: 二 ...
- JAVA核心技术I---JAVA开发环境配置
一:常常有看到Java SE,Java EE,Java ME,那么他们的区别呢? 1. Java SE(Java Platform,Standard Edition java平台标准版). Java ...
- js便携小方法,你值得拥有
引言: 本章没有深奥的讲解js一些底层原理,比如this指针.作用域.原型啦,涉及的都是一些有利于平时开发时简化代码,提高执行效率,或者说可以当做一种经验方法来使用,篇幅都不长,小步快跑的让你阅读完整 ...
- Java8 新特性 Streams map() 示例
在Java 8中stream().map(),您可以将对象转换为其他对象.查看以下示例: 1.大写字符串列表 1.1简单的Java示例将Strings列表转换为大写. TestJava8.java p ...
- 高效使用jquery之一:请使用'On'函数
on函数是在jquery 1.7 加入的 描述: 在选定的元素上绑定一个或多个事件处理函数. 定义:.on( events [, selector ] [, data ], handler(event ...
- HDU 4500 小Q系列故事——屌丝的逆袭
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4500 解题报告:简单题,数据范围不大,直接暴力每个点,然后再比较出得分最大的点的位置和分数. #inc ...
- C++中全排列函数next_permutation用法
最近做了TjuOj上关于全排列的几个题,室友告诉了一个非常好用的函数,谷歌之,整理如下: next_permutation函数 组合数学中经常用到排列,这里介绍一个计算序列全排列的函数:next_pe ...
- Linux的基础优化-2
1.启动网卡 ifup eth0 2.SSH链接 ifconfig 查看IP后SSH终端连接3.更新源 最小化安装是没有wget工具的,必须先安装再修改源 yum install wget 备份原系统 ...
- glut glew区别
GLEW是一个跨平台的C++扩展库,基于OpenGL图形接口.使用OpenGL的朋友都知道,window目前只支持OpenGL1.1的涵数,但 OpenGL现在都发展到2.0以上了,要使用这些Open ...
- 利用正则表达式去除所有html标签,只保留文字
后台将富文本编辑器中的内容返回到前端时如果带上了标签,这时就可以利用这种方法只保留文字. 标签的格式有以下几种 1.<div class="test"></div ...