题目描述

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本):

  1. 插入x数

  2. 删除x数(若有多个相同的数,因只删除一个,如果没有请忽略该操作)

  3. 查询x数的排名(排名定义为比当前数小的数的个数+1。若有多个相同的数,因输出最小的排名)

  4. 查询排名为x的数

  5. 求x的前驱(前驱定义为小于x,且最大的数,如不存在输出-2147483647)

  6. 求x的后继(后继定义为大于x,且最小的数,如不存在输出2147483647)

和原本平衡树不同的一点是,每一次的任何操作都是基于某一个历史版本,同时生成一个新的版本。(操作3, 4, 5, 6即保持原版本无变化)

每个版本的编号即为操作的序号(版本0即为初始状态,空树)

输入输出格式

输入格式:

第一行包含一个正整数N,表示操作的总数。

接下来每行包含三个正整数,第 i 行记为 vi​,opti​,xi​。

vi​表示基于的过去版本号( 0≤vi​<i ),opti​ 表示操作的序号( 1≤opt≤6 ), xi​ 表示参与操作的数值

输出格式:

每行包含一个正整数,依次为各个3,4,5,6操作所对应的答案

输入输出样例

输入样例#1:

10
0 1 9
1 1 3
1 1 10
2 4 2
3 3 9
3 1 2
6 4 1
6 2 9
8 6 3
4 5 8
输出样例#1:

9
1
2
10
3

说明

数据范围:

对于28%的数据满足: 1≤n≤10

对于44%的数据满足: 1≤n≤2⋅102

对于60%的数据满足: 1≤n≤3⋅103

对于84%的数据满足: 1≤n≤105

对于92%的数据满足: 1≤n≤2⋅105

对于100%的数据满足:1≤n≤5⋅105 , −109≤xi​≤109

经实测,正常常数的可持久化平衡树均可通过,请各位放心

样例说明:

共10次操作,11个版本,各版本的状况依次是:

  1. [][]

  2. [9][9]

  3. [3, 9][3,9]

  4. [9, 10][9,10]

  5. [3, 9][3,9]

  6. [9, 10][9,10]

  7. [2, 9, 10][2,9,10]

  8. [2, 9, 10][2,9,10]

  9. [2, 10][2,10]

  10. [2, 10][2,10]

  11. [3, 9][3,9]

Solution:

  本题可持久化平衡树板子题(没啥好写的)。

  我们先用无旋treap打下普通平衡树那道板子题,那么可持久化无非是在之前版本的状态基础上每次新开节点记录新的状态就好了。

  于是只需要每次改为新建节点去merge,改为新建节点去split,记录每个版本的树根就好了(感觉很简单啊)。

代码:

/*Code by 520 -- 9.26*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=5e5+,inf=0x7fffffff;
int n,root[N],cnt;
struct node{
int ls,rs,siz,date,rnd;
}t[N*]; int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-') x=getchar();
if(x=='-') x=getchar(),f=;
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return f?-a:a;
} il int newnode(int v){
++cnt;
t[cnt].date=v,t[cnt].siz=,t[cnt].rnd=rand();
return cnt;
} il void up(int rt){t[rt].siz=t[t[rt].ls].siz+t[t[rt].rs].siz+;} int merge(int x,int y){
if(!x||!y) return x+y;
if(t[x].rnd<t[y].rnd){
int p=++cnt;t[p]=t[x];
t[p].rs=merge(t[p].rs,y);
up(p);
return p;
}
else {
int p=++cnt;t[p]=t[y];
t[p].ls=merge(x,t[p].ls);
up(p);
return p;
}
} void split(int rt,int k,int &x,int &y){
if(!rt) {x=y=;return;}
if(t[rt].date<=k){
x=++cnt;t[x]=t[rt];
split(t[x].rs,k,t[x].rs,y);
up(x);
}
else {
y=++cnt;t[y]=t[rt];
split(t[y].ls,k,x,t[y].ls);
up(y);
}
} void del(int &root,int v){
int x=,y=,z=;
split(root,v,x,z),split(x,v-,x,y);
y=merge(t[y].ls,t[y].rs);
root=merge(x,merge(y,z));
} void ins(int &root,int v){
int x=,y=; split(root,v,x,y);
root=merge(x,merge(newnode(v),y));
} il int kth(int rt,int v){
while(){
if(v<=t[t[rt].ls].siz) rt=t[rt].ls;
else if(v>t[t[rt].ls].siz+) v-=t[t[rt].ls].siz+,rt=t[rt].rs;
else return t[rt].date;
}
} il int id(int &root,int v){
int x=,y=,ans; split(root,v-,x,y);
ans=t[x].siz+;
root=merge(x,y);
return ans;
} il int pre(int &root,int v){
int x=,y=,ans; split(root,v-,x,y);
if(!x) return -inf;
ans=kth(x,t[x].siz);
root=merge(x,y);
return ans;
} il int suc(int &root,int v){
int x=,y=,ans; split(root,v,x,y);
if(!y) return inf;
ans=kth(y,);
root=merge(x,y);
return ans;
} int main(){
srand(time());
n=gi();
int v,opt,x;
For(i,,n){
v=gi(),opt=gi(),x=gi();
root[i]=root[v];
if(opt==) ins(root[i],x);
if(opt==) del(root[i],x);
if(opt==) printf("%d\n",id(root[i],x));
if(opt==) printf("%d\n",kth(root[i],x));
if(opt==) printf("%d\n",pre(root[i],x));
if(opt==) printf("%d\n",suc(root[i],x));
}
return ;
}

P3835 【模板】可持久化平衡树的更多相关文章

  1. luoguP3835 [模板]可持久化平衡树

    https://www.luogu.org/problemnew/show/P3835 因为博主精力和实力有限,学不懂 fhq treap 了,因此只介绍 leafy tree 解法 leafy tr ...

  2. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  3. Luogu P3835 【模板】可持久化平衡树(fhq Treap)

    P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...

  4. 洛谷P3835 【模板】可持久化平衡树

    题目背景 本题为题目 普通平衡树 的可持久化加强版. 数据已经经过强化 感谢@Kelin 提供的一组hack数据 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作( ...

  5. luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)

    luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...

  6. [Luogu 3835]【模板】可持久化平衡树

    Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本): 插入x数 删除x数(若有多个相同的数,因只删除一个,如果没有请忽略该操作 ...

  7. LG3835 【模板】可持久化平衡树

    题意 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本): 插入x数 删除x数(若有多个相同的数,因只删除一个,如果没有请忽略该操作) 查询x数的排名 ...

  8. 2021.07.02 P1383 高级打字机题解(可持久化平衡树)

    2021.07.02 P1383 高级打字机题解(可持久化平衡树) 分析: 从可以不断撤销并且查询不算撤销这一骚操作可以肯定这是要咱建一棵可持久化的树(我也只会建可持久化的树,当然,还有可持久化并查集 ...

  9. 可持久化Trie & 可持久化平衡树 专题练习

    [xsy1629]可持久化序列 - 可持久化平衡树 http://www.cnblogs.com/Sdchr/p/6258827.html [bzoj4260]REBXOR - Trie 事实上只是一 ...

随机推荐

  1. angularjs中audio/video 路径赋值问题

    之前解决这个问题都是通过js的attr赋值解决的,但是也一直不明白为什么audio直接在HTML中赋值报错.解决方法就是通过添加$sce过滤效果 app.filter("trustUrl&q ...

  2. @RestController注解

    @RestController注解其实就是@@Controller和@ResponseBody的组合:RESTFUL风格 看下源码: 当@ResponseBody放到Controller类上,改Con ...

  3. gym100676 [小熊骑士限定]2015 ACM Arabella Collegiate Programming Contest

    Kuma Rider久违的第二场训练,这场很水,又在vj的榜单上看到第一场的大哥了,2小时ak,大哥牛啤! A.水 #include<cstdio> #include<iostrea ...

  4. PHP核心技术——继承与多态

    继承: class person{ public $name='Tom'; public $gender; static $money=10000; public function __constru ...

  5. 匹配追踪算法(MP)简介

    图像的稀疏表征 分割原始图像为若干个\[\sqrt{n} \times \sqrt{n}\]的块. 这些图像块就是样本集合中的单个样本\(y = \mathbb{R}^n\). 在固定的字典上稀疏分解 ...

  6. Python20 - Day08

    异常处理 一.什么是异常? 异常就是程序运行时发生错误的信号(在程序出现错误时,则会产生一个异常,若程序没有处理他,则会抛出该异常,程序的运行也会停止) 错误分成两种: 1.语法错误 2.逻辑错误 二 ...

  7. 20135316王剑桥 linux第六周课实验笔记

    6.存储器层次结构 6.1存储技术 1.如果你的程序需要的数据是存储在CPU寄存器中的,那么在执行期间,在零个周期内就能访问到它们.如果存储在高速缓冲中,需要1-10个周期.如果存储在主存中,需要50 ...

  8. Task 6.4 冲刺Two之站立会议7

    今天又重新对服务器部分加以分析改进,由于用户登录时必须得连接服务器,所以作为整个软件最核心的服务器的部分,只有保障了这个内容才能保证软件的正常运行.

  9. WebGL七点二

    与上一节相比这一节相当做了些整合和整理,目的是提高了读写效率和减少代码量,就是做了优化.这里我们只需要在顶点着色器中定义一个用于从js传递参数的变量u_MvcMatrix一看就知道是uniform变量 ...

  10. B3

    吴晓晖(组长) 过去两天完成了哪些任务 一些细节的debug,部分优化,算法中有关记录的部分 展示GitHub当日代码/文档签入记录 接下来的计划 推荐算法 还剩下哪些任务 组员:刘帅珍 过去两天完成 ...