http://www.lydsy.com/JudgeOnline/problem.php?id=2660

很容易想到是先把n表示成最大的两个斐波那契数相加,然后再拆分这两个斐波那契数

把数表示成斐波那契进制的形式,第i位表示有没有第i个斐波那契数

比如16=13+3     001001

那么拆分一个数就是把一个1变成0,左边的两个0变成1

前面的1不影响后面

后面1拆出的两个1不能拆到前面1的前面

所以b[i] 表示n的第i个1是第几项斐波那契数

所以dp[i][0/1] 表示b中的i所在位(n的第b[i]个1)是0/1的方案数

如果这个位是1,dp[i][0]=dp[i-1][0]+dp[i-1][1]

如果这个位是0,即这个1被拆了,他能拆的次数是 与前面的1之间的0的个数/2

所以若i-1是1,两个1之间有 b[i]-b[i-1]-1个0

若i-1是0,两个1之间有b[i]-b[i-1]个0

dp[i][1]=dp[i-1][1]*(b[i]-b[i-1]-1)/2+dp[i-1][0]*(b[i]-b[i-1])/2

#include<cstdio>
#include<algorithm> typedef long long LL; using namespace std; LL f[]; int b[]; LL dp[][]; int main()
{
LL n;
scanf("%lld",&n);
f[]=; f[]=;
int t;
for(t=;f[t-]+f[t-]<=n;++t) f[t]=f[t-]+f[t-];
int m=;
for(int i=t-;i;--i)
if(n>=f[i]) b[++m]=i,n-=f[i];
reverse(b+,b+m+);
dp[][]=;
dp[][]=b[]->>;
for(int i=;i<=m;++i)
{
dp[i][]=dp[i-][]+dp[i-][];
dp[i][]=dp[i-][]*(b[i]-b[i-]->>)+dp[i-][]*(b[i]-b[i-]>>);
}
printf("%lld",dp[m][]+dp[m][]);
}

bzoj千题计划213:bzoj2660: [Beijing wc2012]最多的方案的更多相关文章

  1. bzoj2660: [Beijing wc2012]最多的方案

    题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...

  2. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  3. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  4. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  5. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

  6. bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...

  7. bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...

  8. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

  9. bzoj千题计划278:bzoj4590: [Shoi2015]自动刷题机

    http://www.lydsy.com/JudgeOnline/problem.php?id=4590 二分 这么道水题 没long long WA了两发,没判-1WA了一发,二分写错WA了一发 最 ...

随机推荐

  1. stl源码剖析 详细学习笔记 算法(1)

    //---------------------------15/03/27---------------------------- //算法 { /* 质变算法:会改变操作对象之值 所有的stl算法都 ...

  2. 《Effective Java》学习笔记 ——异常

    充分发挥异常的优点,可以提高程序的可读性.可靠性和可维护性. 第57条 只针对异常的情况才使用异常 第58条 对可恢复的情况使用受检异常,对编程错误使用运行时异常 * 如果期望调用者能够适当的恢复,使 ...

  3. leetcode刷题笔记172 阶乘后的零

    题目描述: 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例1: 输入: 输出: 解释: ! = , 尾数中没有零. 示例2: 输入: 输出: 解释: ! = , 尾数中有 个零. 说明: 你 ...

  4. beef局域网内模拟攻击

    0x0环境 主机A win10:10.51.20.60(wifi) 主机A中的虚拟机kali(攻击者):192.168.110.129(NAT) 主机A中的虚拟机win2003(受害者):192.16 ...

  5. SCRUM 12.03

    第二轮迭代从今天起正式开始了.12月3日,我们举行了一次组会. 第一轮迭代结束时,我们意识到第二轮迭代需要实现的功能主要如下: 在下次迭代的时候实现对多个网站的信息进行比较取最优惠的选择,目前我们劲针 ...

  6. Linux内核分析第十八章读书笔记

    第十八章 调试 调试工作艰难是内核级开发区别于用户级开发的一个显著特点. 18.1 准备开始 我们需要什么? 一个bug 一个藏匿bug的内核版本 思路:假定能够让bug重现 在用户级程序中,bug直 ...

  7. 【读书笔记】Linux内核设计与实现(第一章&第二章)

    http://pan.baidu.com/s/1hqYAZNQ OneNote做的笔记没法儿带着格式一起导进来.所以上传到百度云,麻烦老师下载一下了. 下次不再用OneNote.

  8. 剑指offer:数值的整数次方

    题目描述: 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 解题思路: 一开始直接用一个for循环做连乘,测了一下,发现这个指数可能是负 ...

  9. spring boot 添加整合ssl使得http变成https方法

    1. https出现的背景:(1)都知道http传输协议是裸漏的,明文传输的,极易被黑客拦截,因此,(2)人们想出的使用加密,也就是 对称加密 例如aes,不过这个由于因为对称加密需要每个客户端和服务 ...

  10. We're Chronos! ----- Meet the team 团队作业 #1

    Meet Us —————————————————La ligne de séparation————————————————— Kane Lim [林珣玙] < PM, Programmer ...