神经网络

1.神经网络发展的动力:在逻辑回归解决复杂的分类问题时,我们使用属性的一些组合来构造新的属性(x12,x1x2,x22...),这样就会造成属性的数目n过多,带来了大量的运算,甚至造成过拟合的现象。在计算机视觉中对物体进行识别,需要将图片的像素点作为属性,因此,属性的项目n将会十分的庞大。逻辑回归解决这类问题存在不足,这给神经网络提供了发展的动力。

2.神经网络的基础模型:

在神经网络模型中,第一层通常称为输入层,最后一层称为输出层,其它层称为隐藏层。如上图所示,在输入层中含有一个偏置x0,其值常为1.其他隐藏层对于其下一层来讲,也都存在一个常为1的偏置。我们通常用a(j)i表示第j层的,第i个神经元;用θ(j)表示第j层的参数(权重)矩阵,其维数为Sj+1*(Sj+1),其中,Sj+1表示为j+1层神经元的个数。维度的推到方式如下图所示:

3.神经网络前向传播的向量化实现:注意除了输出层外,每一层都含有一个值为1的偏置!

每一次前向传播计算都是和逻辑回归方法相同,不同点在于,与逻辑回归的输入值不同,神经网络中的输入值,是上一层的输出值!每一隐藏层根据神经元的连接情况和θ值的设定,都实现了一个特定的功能。

4.神经网络实现AND,NOR,OR运算,然后经过组合实现XOR运算!

5.如何使用神经网络解决多分类问题?

本部分只是强调了,在多分类问题中,最终的预测值y(i)使用一个向量来表示,而不是一个单纯的数字。

Coursera-AndrewNg(吴恩达)机器学习笔记——第四周的更多相关文章

  1. Coursera-AndrewNg(吴恩达)机器学习笔记——第四周编程作业(多分类与神经网络)

    多分类问题——识别手写体数字0-9 一.逻辑回归解决多分类问题 1.图片像素为20*20,X的属性数目为400,输出层神经元个数为10,分别代表1-10(把0映射为10). 通过以下代码先形式化展示数 ...

  2. 吴恩达机器学习笔记(六) —— 支持向量机SVM

    主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...

  3. Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记

    Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...

  4. Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记(完结)

    Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some ...

  5. [吴恩达机器学习笔记]12支持向量机5SVM参数细节

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...

  6. [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...

  7. [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...

  8. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  9. [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数

    11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...

随机推荐

  1. Android so 文件进阶<二> 从dlsym()源码看android 动态链接过程

    0x00  前言 这篇文章其实是我之前学习elf文件关于符号表的学习笔记,网上也有很多关于符号表的文章,怎么说呢,感觉像是在翻译elf文件格式的文档一样,千篇一律,因此把自己的学习笔记分享出来.dls ...

  2. 【详解】JNI(Java Native Interface)(一)

    前言: 一提到JNI,多数编程者会下意识地感受到一种无法言喻的恐惧.它给人的第一感觉就是"难",因为它不是单纯地在JVM环境内操作Java代码,而是跳出虚拟机与其他编程语言进行交互 ...

  3. UVA 227 Puzzle(基础字符串处理)

    题目链接: https://cn.vjudge.net/problem/UVA-227 /* 问题 输入一个5*5的方格,其中有一些字母填充,还有一个空白位置,输入一连串 的指令,如果指令合法,能够得 ...

  4. 拥抱HTML5

    HTNL5是2014年10月W3C推出的新标准,引入新的特性并对移动端更加友好. canvas <canvas>标签用于标记画布元素, 使用js脚本可以在画布上绘制自定义图形. 绘制矩形; ...

  5. Autofac和nopcommerce中的Autofac, 还有反射

    随笔分类 - Ioc Ioc容器Autofac系列(3)-- 三种注册组件的方式 摘要: 简单来说,所谓注册组件,就是注册类并映射为接口,然后根据接口获取对应类,Autofac将被注册的类称为组件. ...

  6. sqlhelper中事务的简单用法

    sql1="INSERT INTO tablename(Id,col1,col2) VALUES(@Id,@col1,@col2) update tablename2 set col=@co ...

  7. oracleHelper 操作帮助类

    using System; using System.Configuration; using System.Data; using System.Collections; using Oracle. ...

  8. HDU5840(SummerTrainingDay08-B 树链剖分+分块)

    This world need more Zhu Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. Python爬虫入门教程石家庄链家租房数据抓取

    1. 写在前面 这篇博客爬取了链家网的租房信息,爬取到的数据在后面的博客中可以作为一些数据分析的素材.我们需要爬取的网址为:https://sjz.lianjia.com/zufang/ 2. 分析网 ...

  10. SPOJ4580 ABCDEF(meet in the middle)

    题意 题目链接 Sol 发现abcdef是互不相关的 那么meet in the middle一下.先算出abc的,再算def的 注意d = 0的时候不合法(害我wa了两发..) #include&l ...