# -*- coding: utf-8 -*-
"""
Created on Mon Sep 17 16:41:46 2018 @author: zhen
""" import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import matplotlib.colors
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans def expand(a, b):
d = (b - a) * 0.1
return a-b, b+d if __name__ == "__main__":
N = 400
centers = 4
data, y = ds.make_blobs(N, n_features=2, centers=centers, random_state=2)
data2, y2 = ds.make_blobs(N, n_features=2, centers=centers, cluster_std=(1, 2.5, 0.5, 2), random_state=2)
# 按行拼接numpy数组
data3 = np.vstack((data[y == 0][:], data[y == 1][:50], data[y == 2][:20], data[y == 3][:5]))
y3 = np.array([0] * 100 + [1] * 50 + [2] * 20 + [3] * 5)
cls = KMeans(n_clusters=4, init='k-means++')
y_hat = cls.fit_predict(data)
y2_hat = cls.fit_predict(data2)
y3_hat = cls.fit_predict(data3) m = np.array(((1, 1),(1, 3)))
data_r = data.dot(m)
y_r_hat = cls.fit_predict(data_r) matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False
cm = matplotlib.colors.ListedColormap(list('rgbm'))
plt.figure(figsize=(9, 10), facecolor='w')
plt.subplot(421)
plt.title(u'原始数据')
plt.scatter(data[:, 0], data[:, 1], c=y, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data, axis=0)
x1_max, x2_max = np.max(data, axis=0)
x1_min, x1_max = expand(x1_min, x1_max)
x2_min, x2_max = expand(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.subplot(422)
plt.title(u'KMeans++聚类')
plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.subplot(423)
plt.title(u'旋转后数据')
plt.scatter(data[:, 0], data[:, 1], c=y, s=30, cmap=cm, edgecolors='none')
#x1_min, x2_min = np.min(data_r, axis=0)
#x1_max, x2_max = np.max(data_r, axis=0)
#x1_min, x1_max = expand(x1_min, x1_max)
#x2_min, x2_max = expand(x2_min, x2_max)
plt.ylim((x1_min, x1_max))
plt.xlim((x2_min, x2_max))
plt.grid(True) plt.subplot(424)
plt.title(u'旋转后KMeans++聚类')
plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
plt.ylim((x1_min, x1_max))
plt.xlim((x2_min, x2_max))
plt.grid(True) plt.subplot(425)
plt.title(u'方差不相等数据')
plt.scatter(data2[:, 0], data2[:, 1], c=y2, s=30, cmap=cm, edgecolors='none')
#x1_min, x2_min = np.min(data2, axis=0)
#x1_max, x2_max = np.max(data2, axis=0)
#x1_min, x1_max = expand(x1_min, x1_max)
#x2_min, x2_max = expand(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.subplot(426)
plt.title(u'方差不相等KMeans++聚类')
plt.scatter(data2[:, 0], data2[:, 1], c=y2_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.subplot(427)
plt.title(u'数量不相等数据')
plt.scatter(data3[:, 0], data3[:, 1], c=y3, s=30, cmap=cm, edgecolors='none')
#x1_min, x2_min = np.min(data3, axis=0)
#x1_max, x2_max = np.max(data3, axis=0)
#x1_min, x1_max = expand(x1_min, x1_max)
#x2_min, x2_max = expand(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.subplot(428)
plt.title(u'数量不相等KMeans++聚类')
plt.scatter(data3[:, 0], data3[:, 1], c=y3_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True) plt.tight_layout(2, rect=(0, 0, 1, 0.97))
plt.suptitle(u'数据分布对KMeans聚类的影响', fontsize=18)
plt.show()

结果:

总结:可知不同的超参数对聚类的效果影响很大,因此在聚类之前采样的数据要尽量保持均匀,各类的方差最好先进行预研,以便达到较好的聚类效果!

Python之聚类(KMeans,KMeans++)的更多相关文章

  1. 机器学习算法与Python实践之(五)k均值聚类(k-means)

    机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...

  2. Python笔记11------一个K-means聚类的小例子

    #导入scipy库,库中已经有实现的kmeans模块,直接使用, #根据六个人的分数分为学霸或者学渣两类 import numpy as np from scipy.cluster.vq import ...

  3. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

  4. 机器学习(二)——K-均值聚类(K-means)算法

    最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算 ...

  5. K-均值聚类(K-means)算法

    https://www.cnblogs.com/ybjourney/p/4714870.html 最近在看<机器学习实战>这本书,因为自己本身很想深入的了解机器学习算法,加之想学pytho ...

  6. 【数据挖掘】聚类之k-means(转载)

    [数据挖掘]聚类之k-means 1.算法简述 分类是指分类器(classifier)根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类.分类被称为监督学习(supervised learn ...

  7. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

  8. 机器学习——详解经典聚类算法Kmeans

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法. 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公 ...

  9. R与数据分析旧笔记(十四) 动态聚类:K-means

    动态聚类:K-means方法 动态聚类:K-means方法 算法 选择K个点作为初始质心 将每个点指派到最近的质心,形成K个簇(聚类) 重新计算每个簇的质心 重复2-3直至质心不发生变化 kmeans ...

随机推荐

  1. Flexbox指南

    Flexbox布局(Flexible Box)模块旨在提供一个更加有效的方式制定.调整和分布一个容器里的项目布局,即使他们的大小是未知或者是动态的.(这里我们称为Flex). Flex布局主要思想是让 ...

  2. 查漏补缺之开g的正则

    当正则表达式开了挂,就会多一个g的修饰符,用于表示全局匹配.然而这个表达式却不仅仅是多了个g这么简单,它的方法也会发生改变.由于之前不是太了解,今天好好捋一下,且听我细细道来. 正则表达式的方法和属性 ...

  3. 全网最详细的CentOS7里如何安装MySQL(得改为替换安装MariaDB)(图文详解)

    不多说,直接上干货! 直接yum install mysql的话会报错,原因在于yum安装库里没有直接可以用的安装包,此时需要用到MariaDB了,MariaDB是MySQL社区开发的分支,也是一个增 ...

  4. 深入了解preventDefault与stopPropagation

    event.preventDefault()用法介绍(阻止默认事件) 该方法将通知 Web 浏览器不要执行与事件关联的默认动作(如果存在这样的动作).例如,如果 type 属性是 "subm ...

  5. PHP之高性能I/O框架:Libevent(一)

    Libevent 是一个用C语言编写的.轻量级的开源高性能I/O框架,支持多种 I/O 多路复用技术: epoll. poll. dev/poll. select 和 kqueue 等:支持 I/O, ...

  6. Makefile中.PHONY的作用

    单词phony (即phoney)的意思是:伪造的,假的.来自collins的解释是: If you describe something as phoney, you disapprove of i ...

  7. mongo学习使用记录1

    1 mongo的安装 1.添加MongoDB安装源 1.添加MongoDB安装源vim /etc/yum.repos.d/mongodb-enterprise.repo 将下列配置项写入文件 [mon ...

  8. 基于卷积神经网络的手写数字识别分类(Tensorflow)

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  9. 一个Time TodoList实例了解redux在wepy中的使用

    @subject: wepy-redux-time-todo @author: leinov @date:2018-10-30 @notice: 小程序(wepy)开发群110647537 欢迎加入 ...

  10. C#根据byte前两位获取图片扩展名

    C#根据byte前两位获取图片扩展名 /// <summary> /// 根据byte前两位获取图片扩展名 /// </summary> /// <param name= ...