roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。

在这里暂时记录下roidb的结构信息,后面继续看的时候可能会有些修正:

roidb是由字典组成的list,roidb[img_index]包含了该图片索引所包含到roi信息,下面以roidb[img_index]为例说明:

roidb[img_index]包含的key, value
boxes box位置信息,box_num*4的np array
gt_overlaps 所有box在不同类别的得分,box_num*class_num矩阵
gt_classes 所有box的真实类别,box_num长度的list
flipped 是否翻转
 image 该图片的路径,字符串
width 图片的宽
height  图片的高
max_overlaps 每个box的在所有类别的得分最大值,box_num长度
max_classes 每个box的得分最高所对应的类,box_num长度
bbox_targets 每个box的类别,以及与最接近的gt-box的4个方位偏移

参考iamzhangzhuping的博客,感谢!更多信息请移步iamzhangzhuping的博客

下面是代码

roidb.py

import numpy as np
from fast_rcnn.config import cfg
from fast_rcnn.bbox_transform import bbox_transform
from utils.cython_bbox import bbox_overlaps
import PIL def prepare_roidb(imdb):
# 给原始roidata添加一些说明性的附加属性
"""Enrich the imdb's roidb by adding some derived quantities that
are useful for training. This function precomputes the maximum
overlap, taken over ground-truth boxes, between each ROI and
each ground-truth box. The class with maximum overlap is also
recorded.
"""
sizes = [PIL.Image.open(imdb.image_path_at(i)).size
for i in xrange(imdb.num_images)]
# 当在‘Stage 2 Fast R-CNN, init from stage 2 RPN R-CNN model’阶段中,roidb由rpn_roidb()
# 方法生成,其中的每一张图像的box不仅仅只有gtbox,还包括rpn_file里面的box。
roidb = imdb.roidb
for i in xrange(len(imdb.image_index)):
roidb[i]['image'] = imdb.image_path_at(i)
roidb[i]['width'] = sizes[i][0]
roidb[i]['height'] = sizes[i][1]
# need gt_overlaps as a dense array for argmax
# gt_overlaps是一个box_num*classes_num的矩阵,应该是每个box在不同类别的得分
gt_overlaps = roidb[i]['gt_overlaps'].toarray()
# max overlap with gt over classes (columns)
# 每个box的在所有类别的得分最大值,box_num长度
max_overlaps = gt_overlaps.max(axis=1)
# gt class that had the max overlap
# 每个box的得分最高所对应的类,box_num长度
max_classes = gt_overlaps.argmax(axis=1)
roidb[i]['max_classes'] = max_classes
roidb[i]['max_overlaps'] = max_overlaps
# sanity checks
# 做检查,max_overlaps == 0意味着背景,否则非背景
# max overlap of 0 => class should be zero (background)
zero_inds = np.where(max_overlaps == 0)[0]
assert all(max_classes[zero_inds] == 0)
# max overlap > 0 => class should not be zero (must be a fg class)
nonzero_inds = np.where(max_overlaps > 0)[0]
assert all(max_classes[nonzero_inds] != 0) def add_bbox_regression_targets(roidb):
"""Add information needed to train bounding-box regressors."""
assert len(roidb) > 0
assert 'max_classes' in roidb[0], 'Did you call prepare_roidb first?' num_images = len(roidb)
# Infer number of classes from the number of columns in gt_overlaps
# 类别数,roidb[0]对应第0号图片上的roi,shape[1]多少列表示roi属于不同类上的概率
num_classes = roidb[0]['gt_overlaps'].shape[1]
for im_i in xrange(num_images):
rois = roidb[im_i]['boxes']
max_overlaps = roidb[im_i]['max_overlaps']
max_classes = roidb[im_i]['max_classes']
# bbox_targets:每个box的类别,以及与最接近的gt-box的4个方位偏移
roidb[im_i]['bbox_targets'] = \
_compute_targets(rois, max_overlaps, max_classes) # 这里config是false
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
# Use fixed / precomputed "means" and "stds" instead of empirical values
# 使用固定的均值和方差代替经验值
means = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS), (num_classes, 1))
stds = np.tile(
np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS), (num_classes, 1))
else:
# Compute values needed for means and stds
# 计算所需的均值和方差
# var(x) = E(x^2) - E(x)^2
# 计数各个类别出现box的数量
class_counts = np.zeros((num_classes, 1)) + cfg.EPS #加上cfg.EPS防止除0出错
# 21类*4个位置,如果出现box的类别与其中某一类相同,将该box的4个target加入4个列元素中
sums = np.zeros((num_classes, 4))
# 21类*4个位置,如果出现box的类别与其中某一类相同,将该box的4个target的平方加入4个列元素中
squared_sums = np.zeros((num_classes, 4))
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
# box的类别与该类匹配,计入
if cls_inds.size > 0:
class_counts[cls] += cls_inds.size
sums[cls, :] += targets[cls_inds, 1:].sum(axis=0)
squared_sums[cls, :] += \
(targets[cls_inds, 1:] ** 2).sum(axis=0) means = sums / class_counts # 均值
stds = np.sqrt(squared_sums / class_counts - means ** 2) #标准差 print 'bbox target means:'
print means
print means[1:, :].mean(axis=0) # ignore bg class
print 'bbox target stdevs:'
print stds
print stds[1:, :].mean(axis=0) # ignore bg class # Normalize targets
# 对每一box归一化target
if cfg.TRAIN.BBOX_NORMALIZE_TARGETS:
print "Normalizing targets"
for im_i in xrange(num_images):
targets = roidb[im_i]['bbox_targets']
for cls in xrange(1, num_classes):
cls_inds = np.where(targets[:, 0] == cls)[0]
roidb[im_i]['bbox_targets'][cls_inds, 1:] -= means[cls, :]
roidb[im_i]['bbox_targets'][cls_inds, 1:] /= stds[cls, :]
else:
print "NOT normalizing targets" # 均值和方差也用于预测
# These values will be needed for making predictions
# (the predicts will need to be unnormalized and uncentered)
return means.ravel(), stds.ravel() # ravel()排序拉成一维 def _compute_targets(rois, overlaps, labels): # 参数rois只含有当前图片的box信息
"""Compute bounding-box regression targets for an image."""
# Indices目录 of ground-truth ROIs
# ground-truth ROIs
gt_inds = np.where(overlaps == 1)[0]
if len(gt_inds) == 0:
# Bail if the image has no ground-truth ROIs
# 不存在gt ROI,返回空数组
return np.zeros((rois.shape[0], 5), dtype=np.float32)
# Indices of examples for which we try to make predictions
# BBOX阈值,只有ROI与gt的重叠度大于阈值,这样的ROI才能用作bb回归的训练样本
ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI
# 计算ex ROI and gt ROI的IoU
ex_gt_overlaps = bbox_overlaps(
# 变数据格式为float
np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
np.ascontiguousarray(rois[gt_inds, :], dtype=np.float)) # Find which gt ROI each ex ROI has max overlap with:
# this will be the ex ROI's gt target
# 这里每一行代表一个ex_roi,列代表gt_roi,元素数值代表两者的IoU
gt_assignment = ex_gt_overlaps.argmax(axis=1) #按行求最大,返回索引.
gt_rois = rois[gt_inds[gt_assignment], :] #每个ex_roi对应的gt_rois,与下面ex_roi数量相同
ex_rois = rois[ex_inds, :] targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
targets[ex_inds, 0] = labels[ex_inds] #第一个元素是label
targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois) #后4个元素是ex_box与gt_box的4个方位的偏移
return targets

py-faster-rcnn代码阅读3-roidb.py的更多相关文章

  1. tensorflow faster rcnn 代码分析一 demo.py

    os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...

  2. py faster rcnn+ 1080Ti+cudnn5.0

    看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...

  3. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  4. Faster rcnn代码理解(1)

    这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...

  5. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

  6. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  7. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  8. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  9. Faster R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...

  10. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

随机推荐

  1. M1事后分析报告

    在得到M1团队成绩之后,每个团队都需要编写一个事后分析报告,对于团队在M1阶段的工作做一个总结. 请在2015年11月24日上课之前根据下述博客中的模板总结前一阶段的工作,发表在团队博客上,并在课上的 ...

  2. Alpha版本测试

    Alpha版本测试报告 项目名称:面向团队的日程提醒系统 软件版本:1.0.0 开发方:Team c# 开发代表:崔强 杜正远 是否经过开发自测(单元测试):是 软件运行环境: Android4.4. ...

  3. OpenState之 Mac学习 实验

    OpenState之 Mac学习 实验 目录 OpenState安装 Port Knocking 实验 Mac Learning 实验 环境要求: 系统ubuntu 14.04 mininet:2.3 ...

  4. wc命令行程序

    软件的需求分析 程序处理用户需求的模式为: wc.exe [parameter][filename] 在[parameter]中,用户通过输入参数与程序交互,需实现的功能如下: 1.基本功能 支持 - ...

  5. DEP

    DEP(Data execution protect)数据执行保护,这个功能需要操作系统和硬件的共同支持才可以生效.DEP的原理就是在系统的内存页中设置了一个标志位,标示这个内存页的属性(可执行). ...

  6. Struts2 分割字符串标签s:generator

    有些时候会从后台返回一个字符串,可以通过Strut2的标签s:generator进行分割. generator标签,该标签可以将指定字符串按指定分隔符分割成多个字串.生成的多个字串可以用iterato ...

  7. mininet *** Error: RTNETLINK answers: No such file or directory 问题及解决方法

    一.问题 按照mininet官网中从源码安装步骤进行安装后,运行命令sudo mn --link tc,bw=10,提示说*** Error: RTNETLINK answers: No such f ...

  8. 【刷题】BZOJ 3495 PA2010 Riddle

    Description 有n个城镇被分成了k个郡,有m条连接城镇的无向边. 要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都. Input 第一行有三个整数,城镇数n(1<=n& ...

  9. dp乱写2:论dp在不在dp中(但在dp范畴)内的应用

    最近正儿八经的学习了dp,有一些题目非常明显看出来就是dp了比如说:过河卒.方格取数.导弹拦截.加分二叉树.炮兵阵地更加明显的还有:采药.装箱问题.过河.金明的预算方案.今天来谈谈dp的dp在不在dp ...

  10. mybatis ${}与#{}的区别

    #{}可以直接获取方法的参数: ${}从方法的参数中利用get方法来获取参数的属性值: