对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n)。

  那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n)。考虑枚举gcd。显然gcd(i,n)=x在该范围内解的个数是φ(n/x)。分解一下质因数即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 100
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int m,T,prime[N],cnt[N],p[N][N],t,ans;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void dfs(int k,int s,int phi)
{
if (k>t) {ans=(ans+1ll*ksm(m,s-)*phi)%P;return;}
for (int i=;i<cnt[k];i++) dfs(k+,1ll*s*p[k][i]%P,1ll*phi*(prime[k]-)%P*p[k][cnt[k]-i-]%P);
dfs(k+,1ll*s*p[k][cnt[k]]%P,phi);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
int n=read();m=n,t=;
for (int i=;i*i<=n;i++)
if (n%i==)
{
prime[++t]=i,cnt[t]=;n/=i;
while (n%i==) cnt[t]++,n/=i;
}
if (n>) prime[++t]=n,cnt[t]=;
for (int i=;i<=t;i++)
{
p[i][]=;
for (int j=;j<=cnt[i];j++) p[i][j]=1ll*p[i][j-]*prime[i]%P;
}
ans=;dfs(,,);
printf("%d\n",ans);
}
return ;
}

Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)的更多相关文章

  1. [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)

    Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7630   Accepted: 2507 Description ...

  2. 【poj2154】Color Polya定理+欧拉函数

    题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...

  3. poj2154Color polya定理+欧拉函数优化

    没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...

  4. [组合数学] 圆排列和欧拉函数为啥有关系:都是polya定理的锅

    本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了. 首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的 ...

  5. POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)

    由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...

  6. poj2409 & 2154 polya计数+欧拉函数优化

    这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...

  7. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

  8. C++数论板题(弹药科技):Lengendre定理和欧拉函数

    弹药科技 时间限制: 1 Sec 内存限制: 128 MB 题目描述 经过精灵族全力抵挡,精灵终于坚持到了联络系统的重建,于是精灵向人类求助, 大魔法师伊扎洛决定弓}用博士的最新科技来抗敌. 伊扎洛: ...

  9. [Sdoi2010]古代猪文 (卢卡斯定理,欧拉函数)

    哇,这道题真的好好,让我这个菜鸡充分体会到卢卡斯和欧拉函数的强大! 先把题意抽象出来!就是计算这个东西. p=999911659是素数,p-1=2*3*4679*35617 所以:这样只要求出然后再快 ...

  10. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. 例子:照片的OCR识别

    来自ng的ml-003中 18_XVIII._Application_Example-_Photo_OCR 这是ng2013年在coursera上最后的一课了.这一系列的几个视频还是相比前面有些难懂, ...

  2. CentOS虚拟机如何设置共享文件夹,并在Windows下映射网络驱动器?

    一.为什么要这么做? 最近在做Linux下的软件开发,但又想使用Windows下的编程工具“Source Insight”. 亲测有效.  要注意查看smb.conf.example,centos7的 ...

  3. [Oracle]坏块处理:确认坏块的对象

    如果已经知道 FILE#,BLOCK#,则 可以通过如下查询来看: SQL> SELECT SEGMENT_TYPE,OWNER||'.'||SEGMENT_NAME FROM DBA_EXTE ...

  4. 谈谈对Python装饰器的理解

    装饰器,又名函数修饰符.笔者觉得函数修饰符,这个名字更能直观的反应他的作用. 函数修饰符语法特征 :         @ + 修饰符 函数修饰符的装饰对象:        函数修饰符,就是说他修饰的是 ...

  5. mfc 线程的优先级

    知识点:  线程优先级  获取当前线程句柄  线程优先级设置  线程优先级变动  线程优先级获取 一.线程优先级(Thread priority ) 简单的说就是(线程)的优先级越高,那么就 ...

  6. 基于Boost库的HTTP Post函数

    两个函数的区别: 提交表单数据和提交文本数据 表单数据: request_stream << "Content-Type: application/x-www-form-urle ...

  7. [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]

    题意 给你 \(n\) 和 \(k\) ,问能否用 \(k\) 的所有 \(>1\) 的因子凑出 \(n\) .多组数据,但保证不同的 \(k\) 不超过 50 个. \(n\leq 10^{1 ...

  8. [CF1062F]Upgrading Cities[拓扑排序]

    题意 一张 \(n\) 点 \(m\) 边的 \(DAG\) ,问有多少个点满足最多存在一个点不能够到它或者它不能到. \(n,m\leq 3\times 10^5\) 分析 考虑拓扑排序,如果 \( ...

  9. 分布式事务的CAP理论 与BASE理论

    CAP理论 一个经典的分布式系统理论.CAP理论告诉我们:一个分布式系统不可能同时满足一致性(C:Consistency).可用性(A:Availability)和分区容错性(P:Partition ...

  10. 设计模式 笔记 模版方法模式 Template Method

    //---------------------------15/04/28---------------------------- //TemplateMethod 模版方法模式----类行为型模式 ...