管道

Conn1,conn2 = Pipe()

Conn1.recv()

Conn1.send()

数据接收一次就没有了

from multiprocessing import Process,Pipe

def f1(conn):

    from_zhujincheng = conn.recv()
print('子进程')
print('来自主进程的消息:',from_zhujincheng) if __name__ == '__main__':
conn1,conn2 = Pipe() #创建一个管道对象,全双工,返回管道的两端,但是一端发送的消息,只能另外一端接收,自己这一端是不能接收的
p1 = Process(target=f1,args=(conn2,))
p1.start() conn1.send('出来吧')
print('主进程')

事件

E = Event()  #初识状态是false

E.wait()  当事件对象e的状态为false的时候,在wait的地方会阻塞程序,当对象状态为true的时候,直接在这个wait地方继续往下执行

E.set()  将事件对象的状态改为true,

E.is_set() 查看状态

E.clear()  将事件对象的状态改为false

from multiprocessing import Process,Event

e = Event()  #创建事件对象,这个对象的初识状态为False
print('e的状态是:',e.is_set()) # False print('进程运行到这里了')
e.set() #将e的状态改为True
print('e的状态是:',e.is_set()) # True e.clear() #将e的状态改为False e.wait() #e这个事件对象如果值为False,就在我加wait的地方等待 print('进程过了wait')

信号量

S = semphore(数字),内部维护了一个计数器,acquire-1,release+1,为0的时候,其他的进程都要在acquire之前等待

S.acquire()

需要锁住的代码

S.release()

import time,random
from multiprocessing import Process,Semaphore def f1(i,s):
s.acquire()
print('%s男嘉宾到了'%i)
time.sleep(random.randint(1,3))
s.release() if __name__ == '__main__':
s = Semaphore(4) #计数器4,acquire一次减一,为0 ,其他人等待,release加1
for i in range(10):
p = Process(target=f1,args=(i,s))
p.start()

进程池

进程的创建和销毁是很有消耗的,影响代码执行效率

在有进程池的代码中,主进程运行结束,进程池里面的任务全部停止,不会等待进程池里面的任务

pl = Pool(数字)   这个数字一般是电脑的cpu数

pl的方法:

  Map:异步提交任务,并且传参需要可迭代类型的数据,自带close和join功能

import time
from multiprocessing import Process,Pool #对比多进程和进程池的效率
def f1(n):
for i in range(5):
n = n + i if __name__ == '__main__': #统计进程池执行100个任务的时间
s_time = time.time()
pool = Pool(4)
pool.map(f1,range(100))
e_time = time.time()
dif_time = e_time - s_time #统计100个进程,来执行100个任务的执行时间
p_s_t = time.time() #多进程起始时间
p_list = []
for i in range(100):
p = Process(target=f1,args=(i,))
p.start()
p_list.append(p)
[pp.join() for pp in p_list]
p_e_t = time.time()
p_dif_t = p_e_t - p_s_t
print('进程池的时间:',dif_time)
print('多进程的执行时间:',p_dif_t)
# 结果: 进程池的时间: 0.40102291107177734 多进程的执行时间: 9.247529029846191
# 可以看出进程池运行效率远远大于创建多进程

  

Close : 锁住进程池,防止有其他的新的任务在提交给进程池

  Join : 等待着进程池将自己里面的任务都执行完

  Res = Apply(f1,args=(i,))  #同步执行任务,必须等任务执行结束才能给进程池提交下一个任务,可以直接拿到返回结果res

import time
from multiprocessing import Process,Pool def f1(n):
time.sleep(1)
return n*n if __name__ == '__main__': pool = Pool(4)
for i in range(10):
res = pool.apply(f1,args=(i,))
print(res)

Res_obj = Apply_async(f1,args=(i,))  #异步提交任务,可以直接拿到结果对象,从结果对象里面拿结果,要用get方法,get方法会阻塞程序,没有拿到结果会一直等待

import time
from multiprocessing import Process,Pool def f1(n):
time.sleep(0.5)
return n*n if __name__ == '__main__': pool = Pool(4) res_list = []
for i in range(10):
res = pool.apply_async(f1,args=(i,)) # 不能直接打印返回值,因为直接返回结果对象,进程还没执行完,结果对象里没有数据
res_list.append(res) pool.close()
pool.join() #打印结果,异步提交之后的结果对象
for i in res_list:
print(i.get())

回调函数:

Apply_async(f1,args=(i,),callback=function)  #将前面f1这个任务的返回结果作为参数传给callback指定的那个function函数

import os
from multiprocessing import Pool,Process def f1(n):
print('传入的函数',n)
return n*n def call_back_func(asdf):
print('回调函数',asdf) if __name__ == '__main__':
pool = Pool(4)
res = pool.apply_async(f1,args=(5,),callback=call_back_func)
pool.close()
pool.join()

Python 并发编程(管道,事件,信号量,进程池)的更多相关文章

  1. python之路--管道, 事件, 信号量, 进程池

    一 . 管道 (了解) from multiprocessing import Process, Pipe def f1(conn): # 管道的recv 里面不用写数字 from_main_proc ...

  2. python并发编程之进程2(管道,事件,信号量,进程池)

    管道 Conn1,conn2 = Pipe() Conn1.recv() Conn1.send() 数据接收一次就没有了 from multiprocessing import Process,Pip ...

  3. 并发编程7 管道&事件&信号量&进程池(同步和异步方法)

    1,管道 2.事件 3.信号量 4.进程池的介绍&&进程池的map方法&&进程池和多进程的对比 5.进程池的同步方法和异步方法 6.重新解释同步方法和异步方法 7.回调 ...

  4. python之管道, 事件, 信号量, 进程池

    管道:双向通信 2个进程之间相互通信 from multiprocessing import Process, Pipe def f1(conn): from_zjc_msg = conn.recv( ...

  5. day 32 管道 事件 信号量 进程池

    一.管道(多个时数据不安全)   Pipe 类 (像队列一样,数据只能取走一次) conn1,conn2 = Pipe()     建立管道 .send()   发送 .recv()   接收 二.事 ...

  6. Python并发编程03 /僵孤进程,孤儿进程、进程互斥锁,进程队列、进程之间的通信

    Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 目录 Python并发编程03 /僵孤进程,孤儿进程.进程互斥锁,进程队列.进程之间的通信 1. 僵尸进程/孤儿进 ...

  7. python并发编程02 /多进程、进程的创建、进程PID、join方法、进程对象属性、守护进程

    python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 目录 python并发编程02 /多进程.进程的创建.进程PID.join方法.进程对象属性.守护进程 ...

  8. python并发编程基础之守护进程、队列、锁

    并发编程2 1.守护进程 什么是守护进程? 表示进程A守护进程B,当被守护进程B结束后,进程A也就结束. from multiprocessing import Process import time ...

  9. python--管道, 事件, 信号量, 进程池

    一 . 管道 (了解) from multiprocessing import Process, Pipe def f1(conn): # 管道的recv 里面不用写数字 from_main_proc ...

随机推荐

  1. jq 复习帖子 常用操作

     1绝对定位(abs)与相对定位(relative)    区别是相对定位参照自己的位置进行移动(当然需要设置top left这些生效)并且原来的位置保留着 偏移后会把其它的层遮罩住    绝对定位就 ...

  2. Windows平台下搭建自己的Git服务器

    该文章转自:http://www.codeceo.com/article/windows-git-server.html Gitblit 是一个纯 Java 库用来管理.查看和处理 Git 资料库,相 ...

  3. vue 3D小球 loading

    <template> <div class="load"> <div class="loadEffect"> <spa ...

  4. Microsoft SQL Server on Linux 踩坑指南

    微软用 SQL Server 在 2016 年的时候搞了一个大新闻,宣传 Microsoft ❤️ Linux 打得一众软粉措手不及.但是这还是好事情,Linux 上也有好用的 SQL Server ...

  5. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  6. ES配置文件中文版

    ##################### Elasticsearch Configuration Example ##################### # This file contains ...

  7. linux中为什么cpu使用率会超过100见解

    linux的cpu使用频率是根据cpu个数和核数决定的 top,然后你按一下键盘的1,这就是单个核心的负载,不然是所有核心的负载相加,自然会超过100 如上面 cpu个数是4个,那么cpu可以占到40 ...

  8. 制作openstack使用的Ubuntu镜像

    一.环境准备 OS:Ubuntu-14.04 制作镜像版本:Ubuntu-14.04.4-server-amd64.iso 查看是否支持虚拟化(有输出代表支持,否则在BIOS页面中设置即可): egr ...

  9. golang内置数据类型作为函数参数

    先上结论 golang的所有内置类型作为函数参数传递都是传值的方式(没有传递引用一说),需要注意的是:数组.slice和map作为函数参数时也是传值,但是如果对结构内元素进行的修改,修改的是原数据.如 ...

  10. 编写无Java脚本的JSP页面

    在上一章中总结了Web开发中应用MVC架构模式,将Servlet 用做控制器,JSP作为视图,JavaBean作为模型,实现业务流程控制,页面逻辑和业务逻辑的分离.然而,使用前面的技术实现MVC,并不 ...