1410 - Consistent Verdicts(规律)
| Time Limit: 5 second(s) | Memory Limit: 32 MB |
In a 2D plane N persons are standing and each of them has a gun in his hand. The plane is so big that the persons can be considered as points and their locations are given as Cartesian coordinates. Each of the N persons fire the gun in his hand exactly once and no two of them fire at the same or similar time (the sound of two gun shots are never heard at the same time by anyone so no sound is missed due to concurrency). The hearing ability of all these persons is exactly same. That means if one person can hear a sound at distance R1, so can every other person and if one person cannot hear a sound at distance R2 the other N-1 persons cannot hear a sound at distance R2 as well.
The N persons are numbered from 1 to N. After all the guns are fired, all of them are asked how many gun shots they have heard (not including their own shot) and they give their verdict. It is not possible for you to determine whether their verdicts are true but it is possible for you to judge if their verdicts are consistent. For example, look at the figure above. There are five persons and their coordinates are (1, 2), (3, 1), (5, 1), (6, 3) and (1, 5) and they are numbered as 1, 2, 3, 4 and 5 respectively. After all five of them have shot their guns, you ask them how many shots each of them have heard. Now if there response is 1, 1, 1, 2 and 1 respectively then you can represent it as (1, 1, 1, 2, 1). But this is an inconsistent verdict because if person 4 hears 2 shots then he must have heard the shot fired by person 2, then obviously person 2 must have heard the shot fired by person 1, 3 and 4 (person 1 and 3 are nearer to person 2 than person 4). But their opinions show that Person 2 says that he has heard only 1 shot. On the other hand (1, 2, 2, 1, 0) is a consistent verdict for this scenario so is (2, 2, 2, 1, 1). In this scenario (5, 5, 5, 4, 4) is not a consistent verdict because a person can hear at most 4 shots.
Given the locations of N persons, your job is to find the total number of different consistent verdicts for that scenario. Two verdicts are different if opinion of at least one person is different.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing a positive integer N (1 ≤ N ≤ 700). Each of the next N lines contains two integers xi yi (0 ≤ xi, yi ≤ 30000)denoting a co-ordinate of a person. Assume that all the co-ordinates are distinct.
Output
For each case, print the case number and the total number of different consistent verdicts for the given scenario.
Sample Input |
Output for Sample Input |
|
2 3 1 1 2 2 4 4 2 1 1 5 5 |
Case 1: 4 Case 2: 2 |
题解:
题意就是n个人每个人听到枪响次数的方案,由于距离问题有的人可能听不到枪响;其实就是不同距离的个数
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;
set<double>st;
const int MAXN=1e6;
double c[MAXN];
struct Node{
int x,y;
};
Node dt[];
double getd(Node a,Node b){
int x=a.x-b.x,y=a.y-b.y;
return sqrt(1.0*x*x+y*y);
}
int main(){
int T,N,flot=;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
for(int i=;i<N;i++)
scanf("%d%d",&dt[i].x,&dt[i].y);
// st.clear();
int k=;
for(int i=;i<N;i++)
for(int j=i+;j<N;j++)
c[k++]=getd(dt[i],dt[j]);
//st.insert(getd(dt[i],dt[j]));
int ans=k;
sort(c,c+k);
for(int i=;i<k;i++)
if(c[i]==c[i-])ans--;
printf("Case %d: %d\n",++flot,ans+);
}
return ;
}
1410 - Consistent Verdicts(规律)的更多相关文章
- LightOJ - 1410 - Consistent Verdicts(规律)
链接: https://vjudge.net/problem/LightOJ-1410 题意: In a 2D plane N persons are standing and each of the ...
- LightOJ 1410 Consistent Verdicts(找规律)
题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...
- lightoj--1410--Consistent Verdicts(技巧)
Consistent Verdicts Time Limit: 5000MS Memory Limit: 32768KB 64bit IO Format: %lld & %llu Su ...
- 初次使用SQL调优建议工具--SQL Tuning Advisor
在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下 ...
- 转 白话解析:一致性哈希算法 consistent hashing
摘要: 本文首先以一个经典的分布式缓存的应用场景为铺垫,在了解了这个应用场景之后,生动而又不失风趣地介绍了一致性哈希算法,同时也明确给出了一致性哈希算法的优点.存在的问题及其解决办法. 声明与致谢: ...
- party lamps(dfs优化+规律枚举)
Problem description: To brighten up the gala dinner of the IOI'98 we have a set of N coloured lamps ...
- 如何在ASP.NET Web站点中统一页面布局[Creating a Consistent Layout in ASP.NET Web Pages(Razor) Sites]
如何在ASP.NET Web站点中统一页面布局[Creating a Consistent Layout in ASP.NET Web Pages(Razor) Sites] 一.布局页面介绍[Abo ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- Codeforces Round #384 (Div. 2) B. Chloe and the sequence(规律题)
传送门 Description Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems ...
随机推荐
- Error (0xc0000225) installing Windows 8 R2 on VirtualBox
Windows Boot Manager Windows failed to start. A recent hardware or software change might be the caus ...
- HDU - 1116 Play on Words(欧拉图)
有向图是否具有欧拉通路或回路的判定: 欧拉通路:图连通:除2个端点外其余节点入度=出度:1个端点入度比出度大1:一个端点入度比出度小1 或 所有节点入度等于出度 欧拉回路:图连通:所有节点入度等于出度 ...
- 原生javascript实现老.虎机抽奖点名demo源码思路解析
想着使用原生Javascript做一个随机点名的小应用, 也可以做抽奖使用. html简单化,人名单可以通过js生成并处理. 可以非常随意的添加修改人名字. 应用想带点特效,比如老.虎机转动的特效. ...
- Determine If Two Rectangles Overlap
判断相交的情况比较复杂,所以从判断不相交的角度考虑. ! (P1.y < P4.y || P1.x > P4.x || P2.y > P3.y || P2.x < P3.x)
- mysql 本机root密码忘记
1.找到对应的my.conf,在mysqld节点添加:skip-grant-tables 2.重启mysql 即可无密登录 3.update user表中的密码后,去除skip-grant-tabl ...
- hive premanent udf 发布...
起因: hive premanent udf 发布成功,但是hue 无法加载使用(但是cli 是可用的) ,处理半天,依然不可用!后来发现重启hiveserver2 就可以了 具体步骤如下: ...
- .net 更改日期格式
示例:更改日期格式 下面的代码示例使用 Regex.Replace 方法将 mm/dd/yy 格式的日期替换为 dd-mm-yy 格式的日期. static string MDYToDMY(strin ...
- 关于yield创建协程的理解
先上利于理解的代码: #coding:utf-8 def consumer(): c_r = '' while 1: m = yield c_r if not m: return print(&quo ...
- 自动输入用户名和密码用于telnet的shell
http://blog.sina.com.cn/s/blog_45497dfa0100l4cf.html
- 转载Spring IntrospectorCleanupListener
"在服务器运行过程中,Spring不停的运行的计划任务和OpenSessionInViewFilter,使得Tomcat反复加载对象而产生框架并用时可能产生的内存泄漏,则使用Introspe ...