BZOJ 1087 互不侵犯king
Description
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
3 2
Sample Output
16
首先这道题用到了名叫状压dp的算法
首先声明:这篇博客不适用于大神们!!!!!
看到互不侵犯的king这道题首先想到的是八皇后问题,但是发现和八皇后大不一样,因为八皇后是用的深搜的方法,但是由于根据国象的规则,一个棋盘能放的皇后要比国王少得多,所以DFS即可。
所以我们考虑其他的方法,因为国王的攻击范围很小,只有周围的一圈。但我们依然不能把所有的状态推出来(即使n<=9)。但我们可以发现只要确定了第一行,就可以将下面的用动规推出来。这样我们就可以用枚举的方式来做了。在枚举的同时,我们可以用二进制的方式来表示状态,这样较好比较,同时也可以压缩状态,这就是状压dp的思想。在这里可以模拟一下。
比如说n=5。 用1表示该格有国王,0反之。
1 1 1 1 1 这种情况显然是不存在的,我么就要把它排除掉。那么怎么排除呢?我们考虑用位运算的思想。将它 右移(>>)一位(因为国王的攻击范围只有1)。即 1 1 1 1 1再进行(&)运算,这样的返回值是1则出现冲突,再比如这种情况 1 0 1 0 1 1 1 1 1 1 。 1 0 1 0 1 这样的返回值是0,所以这种情况存在。而二进制我们可以直接用一个十进制数来表示。如 1 1 1 1 1 十进制是31,可以试一试计算 31&(31>>1)==1.而 1 0 1 0 1 十进制是21,
21&(21>>1)==0。比较时应该左移、右移都进行。另外我们还可以进行预处理。总状态数为 2^n-1,只进行循环即可,代码如下
int check2(int a)//一行自比
{
if(a&(a<<)) return ;
if(a&(a>>)) return ;
return ;
}
int get(int x)//计算状态为x,其中 1 的个数。
{
int tot=;
while(x){
if(x&)
tot++;
x=x>>;
}
return tot;
}int tot=(<<n)-;
for(int i=;i<=tot;i++)
if(check2(i)){
zt[++num]=i;//状态
gs[num]=get(i);//该状态含的国王的个数
}
接下来讲dp的过程——
int f[10] (i) [600] (j) [82] (k) {0};//i为行数,j为第j种状态,k为当前总国王数 f[i][j][k]表示第i行状态为第j种放置了k个国王的方案数。
另外的一种预处理如下,对比两行的状态,可以加速dp过程中的比较。
int check1(int a,int b)//两行对比
{
if(a&(b<<)) return ;
if(a&(b>>)) return ;
if(a&b)return ;//对比两行时就需要对比不移动时的状态,至于为什么,自行脑补
return ;
}
for(int i=;i<=num;i++)//pd[i][j]==1则表示i在上一行j在下一行,并且不冲突
for(int j=;j<=num;j++)
if(check1(zt[i],zt[j]))
pd[i][j]=pd[j][i]=;
主要的dp过程如下
for(int i=;i<n;i++)//循环行数,对应f数组中的行数(i)
for(int j=;j<=num;j++)//循环状态,对应f数组中的(j)
for(int k=;k<=m;k++)//循环国王数,对应数组中的(k)
if(f[i][j][k])
for(int q=;q<=num;q++)//循环i下一行的状态
if(pd[j][q]&&(k+gs[q]<=m))//满足条件就继续
f[i+][q][k+gs[q]]+=f[i][j][k];
long long int ans=;
for(int i=;i<=num;i++)//把第n行的所有状态的f值相加即为答案
ans+=f[n][i][m];
这就是主要的函数,其他的自己加上的吧,光复制标程是没有意义的!!
注意:f[0][1][0]=1 即初始的状态。
BZOJ 1087 互不侵犯king的更多相关文章
- BZOJ 1087 互不侵犯King 状态压缩DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1087 题目大意; 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国 ...
- BZOJ 1087 互不侵犯King (位运算)
题解:首先,这道题可以用位运算来表示每一行的状态,同八皇后的搜索方法,然后对于限制条件不相互攻击,则只需将新加入的一行左右移动与上一行相&,若是0则互不攻击,方案可行.对于每种方案,则用递推来 ...
- BZOJ 1087 互不侵犯
Description 在\(N \times N\)的棋盘里面放\(K\)个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共\(8 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- bzoj 1087 [SCOI2005]互不侵犯King 状态压缩dp
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Descripti ...
- BZOJ 1087:[SCOI2005]互不侵犯King(状压DP)
[SCOI2005]互不侵犯King [题目描述] 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...
- 1087: [SCOI2005]互不侵犯King
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4276 Solved: 2471[Submit][ ...
- 【状压dp】互不侵犯KING
互不侵犯KING Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3866 Solved: 2264[Submit][Status][Discuss] ...
- BZOJ-1087 互不侵犯King 状压DP+DFS预处理
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...
随机推荐
- OAuth2.0基本流程
用户请求客户端>客户端通过在授权服务器上申请的apikey和apisceret>登录访问资源服务器
- 图片延迟加载并等比缩放,一个简单的JQuery插件
使用方法: $(".viewArea img").zoom({height:74,width:103}); (function($){ $.fn.zoom = function(s ...
- 查看oracle锁及解决办法
SQL> select t2.username,t2.sid,t2.serial#,t2.logon_time from v$locked_object t1, v$session t2 whe ...
- oracle参数文件spfile和pfile
一.参数文件说明 PFILE(Initialiazation Parameter Files)初始化参数文件,是文本文件,可直使用文本编辑器查看.如果数据库使用的是初始化参数文件PFILE,要想永久修 ...
- android开发字符串工具类(一)
package com.gzcivil.utils; import java.io.BufferedReader; import java.io.ByteArrayOutputStream; impo ...
- JAVAscript——菜单下拉列表练习(阻止事件冒泡)
下拉列表框,鼠标点击文本框,出现下拉,鼠标(离开的时候或者点击网页其他位置时)下拉列表消失.鼠标放到下拉列表的某一项上变背景色,点击下拉列表的某一项将该项的值显示在文本框内,然后下拉列表消失. < ...
- 阿牛的EOF牛肉串
#include <iostream>using namespace std;long long s0,s1,s2,s3;int main(){ int i,n; while(cin> ...
- highcharts:根据Y的数值范围,动态改变图形的填充颜色
图形实例: 源代码如下: <!DOCTYPE html><html><head><meta charset="utf-8">&l ...
- sass颜色
1只定义一次颜色 {优点:可以给变量赋予不同的值: {缺点:变量名称更改与变量值混乱: 2变浅加深 /*颜色函数*/ .warning-box { background-color:lighten($ ...
- DOM的认识以及一些节点的应用
HTML DOM (文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象模型(Document Object Model). HTML DOM 模型被构造为对象的树. HTML DOM 树 通过 ...