Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6574   Accepted: 3177

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 



There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题目大意:

n头奶牛按1到n排好序,md个限制及mt个限制,md行表示奶牛A与奶牛B相差最多D,mt个限制奶牛A与奶牛B相差最少D,问你奶牛1与奶牛n最多相差多少?

解题思路:

限制条件 :

1、相邻奶牛之间,编号大的距离大于编号小的,即 dist[1]-dist[2]<=0。dist[2]-dist[3]<=0,dist[3]-dist[4]<=0。。。。dist[n-1]-dist[n]<=0

2、md个限制 A与奶牛B相差最多D,dist[B]-dist[A]<=D

3、mt个限制奶牛A与奶牛B相差最少D,dist[B]-dist[A]>=D 。即 dist[B]-dist[A]<=D

v-u<=c,即加入 u->v=c 的单向边

有了这些元素。就能够用差分约束来解了。哈哈,是不是非常easy。

差分约束学习能够參考:http://www.cnblogs.com/void/archive/2011/08/26/2153928.html

解题代码:

#include <iostream>
#include <queue>
#include <cstdio>
using namespace std; const int maxn=1100;
const int maxm=41000;
const int inf=0x3f3f3f3f; struct edge{
int u,v,w,next;
}e[maxm]; int head[maxn],dist[maxn],cnt;
int n; void initial(){
cnt=0;
for(int i=0;i<=n;i++) head[i]=-1;
} void adde(int u,int v,int w){
e[cnt].u=u,e[cnt].v=v,e[cnt].w=w,e[cnt].next=head[u],head[u]=cnt++;
} void input(){
int m,t;
scanf("%d%d",&m,&t);
while(m-- >0){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
while(t-- >0){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(v,u,-w);
}
for(int i=1;i<=n;i++){
if(i>=2) adde(i,i-1,0);
adde(0,i,0);
}
} bool spfa(int from){
int s=from,num[maxn];
bool visited[maxn];
for(int i=0;i<=n;i++){
num[i]=0;
dist[i]=inf;
visited[i]=false;
}
queue <int> q;
q.push(s);
visited[s]=true;
dist[s]=0;
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i!=-1;i=e[i].next){
int d=e[i].v;
if(dist[d]>dist[s]+e[i].w){
dist[d]=dist[s]+e[i].w;
if(!visited[d]){
visited[d]=true;
q.push(d);
num[d]++;
if(num[d]>n) return false;
}
}
}
visited[s]=false;
}
return true;
} void solve(){
if(spfa(0)){
if(spfa(1)){
if(dist[n]==inf) printf("-2\n");
else printf("%d\n",dist[n]);
}
}else printf("-1\n");
} int main(){
while(scanf("%d",&n)!=EOF){
initial();
input();
solve();
}
return 0;
}

POJ 3169 Layout (图论-差分约束)的更多相关文章

  1. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  2. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  3. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  4. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  5. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

  6. POJ 3169 Layout(差分约束+最短路)题解

    题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...

  7. poj 3169 Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6549   Accepted: 3168 Descriptio ...

  8. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  9. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  10. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

随机推荐

  1. AndroidManifest.xml配置文件详解

    AndroidManifest.xml配置文件对于Android应用开发来说是非常重要的基础知识,本文旨在总结该配置文件中重点的用法,以便日后查阅.下面是一个标准的AndroidManifest.xm ...

  2. linux select函数 shutdown函数

    #include<sys/select.h> #include<sys/time.h> int select(int maxfdp1,fd_set *readset,fd_se ...

  3. IE WebDriver 因保护模式无法启动的解决 (转载)

    现在Win7 已经应用很多了,即使是最原始的Win7 也是IE8,最新的patch后,都升到了IE11 Win7下预装高版本IE的情况下,启动IE WebDriver可能会出现: org.openqa ...

  4. cloud computing platform,virtual authentication encryption

    Distributed Management Task Forcevirtual Ethernet port aggregator encryption,authenticating,local ac ...

  5. #include <vector>

    双端队列deque比向量vector更有优势 vector是动态数组,在堆上 vector比array更常用 不需要变长,容量较小,用array 需要变长,容量较大,用vector 1 at() 取出 ...

  6. poj 1149 PIGS(最大流经典构图)

    题目描述:迈克在一个养猪场工作,养猪场里有M 个猪圈,每个猪圈都上了锁.由于迈克没有钥匙,所以他不能打开任何一个猪圈.要买猪的顾客一个接一个来到养猪场,每个顾客有一些猪圈的钥匙,而且他们要买一定数量的 ...

  7. Dyanmics CRM您无法登陆系统。原因可能是您的用户记录或所属的业务部门在Microoft Dynamics CRM中已被禁用

    当在操作CRM时,做不论什么的写操作包含创建数据.更新数据.都会提示以下截图中的错误:"您无法登陆系统.原因可能是您的用户记录或所属的业务部门在Microoft Dynamics CRM中已 ...

  8. 推荐两个不错的CAD二次开发(.Net)手册

    推荐两个不错的CAD二次开发(.Net)手册 http://www.mjtd.com/helpcenter/netguide/index.html http://www.ceesky.com/book ...

  9. grivid中切换按钮,两个按钮交替

    给grivdView不要设值 button的url和 commandName 在rowDatabound中操作变换 protected void GVData_RowDataBound(object ...

  10. socketio 握手前中断报错

    前两天折腾了下socketio,部署完发现通过nginx代理之后前端的socket无法和后端通信了,于是暴查一通,最后解决问题: location / { proxy_pass http://127. ...