POJ 3169 Layout (图论-差分约束)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 6574 | Accepted: 3177 | 
Description
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
Source
题目大意:
n头奶牛按1到n排好序,md个限制及mt个限制,md行表示奶牛A与奶牛B相差最多D,mt个限制奶牛A与奶牛B相差最少D,问你奶牛1与奶牛n最多相差多少?
解题思路:
限制条件 :
1、相邻奶牛之间,编号大的距离大于编号小的,即 dist[1]-dist[2]<=0。dist[2]-dist[3]<=0,dist[3]-dist[4]<=0。。。。dist[n-1]-dist[n]<=0
2、md个限制 A与奶牛B相差最多D,dist[B]-dist[A]<=D
3、mt个限制奶牛A与奶牛B相差最少D,dist[B]-dist[A]>=D 。即 dist[B]-dist[A]<=D
v-u<=c,即加入 u->v=c 的单向边
有了这些元素。就能够用差分约束来解了。哈哈,是不是非常easy。
差分约束学习能够參考:http://www.cnblogs.com/void/archive/2011/08/26/2153928.html
解题代码:
#include <iostream>
#include <queue>
#include <cstdio>
using namespace std; const int maxn=1100;
const int maxm=41000;
const int inf=0x3f3f3f3f; struct edge{
int u,v,w,next;
}e[maxm]; int head[maxn],dist[maxn],cnt;
int n; void initial(){
cnt=0;
for(int i=0;i<=n;i++) head[i]=-1;
} void adde(int u,int v,int w){
e[cnt].u=u,e[cnt].v=v,e[cnt].w=w,e[cnt].next=head[u],head[u]=cnt++;
} void input(){
int m,t;
scanf("%d%d",&m,&t);
while(m-- >0){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
while(t-- >0){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(v,u,-w);
}
for(int i=1;i<=n;i++){
if(i>=2) adde(i,i-1,0);
adde(0,i,0);
}
} bool spfa(int from){
int s=from,num[maxn];
bool visited[maxn];
for(int i=0;i<=n;i++){
num[i]=0;
dist[i]=inf;
visited[i]=false;
}
queue <int> q;
q.push(s);
visited[s]=true;
dist[s]=0;
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i!=-1;i=e[i].next){
int d=e[i].v;
if(dist[d]>dist[s]+e[i].w){
dist[d]=dist[s]+e[i].w;
if(!visited[d]){
visited[d]=true;
q.push(d);
num[d]++;
if(num[d]>n) return false;
}
}
}
visited[s]=false;
}
return true;
} void solve(){
if(spfa(0)){
if(spfa(1)){
if(dist[n]==inf) printf("-2\n");
else printf("%d\n",dist[n]);
}
}else printf("-1\n");
} int main(){
while(scanf("%d",&n)!=EOF){
initial();
input();
solve();
}
return 0;
}
POJ 3169 Layout (图论-差分约束)的更多相关文章
- POJ 3169 Layout (spfa+差分约束)
		
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
 - poj 3169 Layout(差分约束+spfa)
		
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
 - poj 3169 Layout (差分约束)
		
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
 - (简单) POJ 3169 Layout,差分约束+SPFA。
		
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
 - POJ 3169 Layout 【差分约束】+【spfa】
		
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
 - POJ 3169 Layout(差分约束+最短路)题解
		
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
 - poj 3169 Layout(差分约束)
		
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
 - POJ 3167 Layout(差分约束)
		
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
 - POJ 3169 Layout (差分约束系统)
		
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
 - O - Layout(差分约束 + spfa)
		
O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...
 
随机推荐
- JS获取浏览器窗口大小 获取屏幕,浏览器,网页高度宽度
			
网页可见区域宽:document.body.clientWidth 网页可见区域高:document.body.clientHeight 网页可见区域宽:document.body.offsetWid ...
 - C++设计模式之装饰者模式
			
#include "HandCake.h" //手抓饼 HandCake::HandCake() { ; this->name="手抓饼"; } Hand ...
 - 如何阅读mysql源码
			
在微博上问mysql高手,如何阅读mysql 源码大致给了下面的一些建议: step 1,知道代码的组织结构(官方文档http://t.cn/z8LoLgh: Step2: 尝试大致了解一条sql涉及 ...
 - 面向对象程序设计-C++_课时30运算符重载——基本规则_课时31运算符重载——原型_课时32运算符重载——赋值_课时33运算符重载——类型转换
			
区分初始化,赋值 #include <iostream> using namespace std; class Fi { public: Fi() {}//1构造函数 }; class F ...
 - k8s 集群基本概念
			
一.概述: kubernetes是google开源的容器集群管理系统,提供应用部署.维护.扩展机制等功能,利用kubernetes能方便管理跨集群运行容器化的应用,简称:k8s(k与s之间有8个字母) ...
 - HTML:scrollLeft,scrollWidth,clientWidth,offsetWidth到底指的哪到哪的距离之完全详解
			
scrollHeight: 获取对象的滚动高度. scrollLeft:设置或获取位于对象左边界和窗口中目前可见内容的最左端之间的距离 scrollTop:设置或获取位于对象最顶端和窗口中可见内容的最 ...
 - 关于Installation error: INSTALL_FAILED_MISSING_SHARED_LIBRARY
			
google 给的android的例子里,有用到google APIs,新版本的ADT默认只有Android的SDK,如果运行平台与目标平台不一致会报:Installation error: INST ...
 - 用js获取周、月第一天和最后一天(转载)
			
var getCurrentWeek = function (day) { var days = ["周日", "周一", "周二", &q ...
 - Asp.net 获取图片列表并打包下载
			
先引用:ICSharpCode.SharpZipLib.dll 后台代码: using System.IO; using ICSharpCode.SharpZipLib.Zip; using ICSh ...
 - jquery validate.addMethod 正则表达式 (自定义验证方法)
			
项目中使用的jQuery添加的校验的方法 $(document).ready(function(){ 5 6/* 设置默认属性 */ 7$.vali ...