SVM是新近出现的强大的数据挖掘工具,它在文本分类、手写文字识别、图像分类、生物序列分析等实际应用中表现出非常好的性能。SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集。

图1

如图1所示,SVM的目标是找到两个间距尽可能大的边界平面来把样本本点分开,以”最小化泛化误差“,即对新的样本点进行分类预测时,出错的几率最小。落在边界平面上的点称为支持向量。Vapnik证明如果可以找到一个较小的支持向量集,就可以保证得到很好的泛化能力----也就是说支持向量的个数越少越好。

数据点通常在输入空间是线性不可分的,我们把它映射到更高维的特征空间,使其线性可分----这里的映射函数我们称之为核函数。特征空间的超平面对应输入空间的一个非线性的分离曲面,因此称为非线性分离器。

线性SVM分类器的输出是u=w*x-b。w是分类平面的法矢,x是输入向量,b是常量,u代表分类。即SVM的目的就是计算出w和b。最大化margin(两个分类平面之间的距离)等价于求下面的二次优化问题:

对于非线性分类器就要把x映射到特征空间,同时考虑误差ε的存在(即有些样本点会越过分类边界),上述优化问题变为:

从输入空间是映射到特征空间的函数称为核函数,LibSVM中使用的默认核函数是RBF(径向基函数radial basis function),即

这样一来就有两个参数需要用户指定:c和gamma。

我们先安装python的机器学习库

http://sourceforge.net/projects/mlpy/

该学习库有以下3个核函数

1、‘linear’ (uT*v)

2、‘poly’ ((gamma*uT*v +coef0)^degree)

3、‘rbf’ (exp(-gamma*|u-v|^2)), ‘sigmoid’ (tanh(gamma*uT*v + coef0))
其中degree为 [int (for ‘poly’ kernel_type)] degree in kernel

下载并安装后,调用 其中的SVM模块对下面的数据进行训练,这次训练我们使用线性核做为SVM的核函数

x = [[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,0,0,1,0,0,1]
showpoint=['ro','bo']
tshowpoint=['r*','b*']
x=np.array(x)
y=np.array(y)
svm = mlpy.LibSvm()
svm.learn(x, y)

本博客所有内容是原创,如果转载请注明来源

http://blog.csdn.net/myhaspl/

然后生成随机的未知样本测试数据验证生成的SVM模型 ,星号表示未知样本

#未知样本分类
tlp_x1=np.random.rand(50)*(xmax-xmin)+xmin
tlp_x2=np.random.rand(50)*(ymax-ymin)+xmin
tlp_x=np.array(zip(tlp_x1,tlp_x2))
for ii in xrange(0,len(tlp_x)):
ty=svm.pred(tlp_x[ii])
if ty>0:
plt.plot(tlp_x1[ii],tlp_x2[ii], tshowpoint[int(ty)])
else:
plt.plot(tlp_x1[ii],tlp_x2[ii], tshowpoint[int(ty)])

>>> runfile(r'K:\book_prog\mplsvm1.py', wdir=r'K:\book_prog')
http://blog.csdn.net/myhaspl

myhaspl@qq.com

loading  ...

>>> 


数学之路(3)-机器学习(3)-机器学习算法-SVM[7]的更多相关文章

  1. 【原创】机器学习之PageRank算法应用与C#实现(2)球队排名应用与C#代码

    在上一篇文章:机器学习之PageRank算法应用与C#实现(1)算法介绍 中,对PageRank算法的原理和过程进行了详细的介绍,并通过一个很简单的例子对过程进行了讲解.从上一篇文章可以很快的了解Pa ...

  2. 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

    考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...

  3. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  4. 机器学习&深度学习基础(机器学习基础的算法概述及代码)

    参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代 ...

  5. 机器学习中的算法(2)-支持向量机(SVM)基础

    版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gma ...

  6. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  7. 转:机器学习中的算法(2)-支持向量机(SVM)基础

    机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...

  8. 机器学习十大算法之KNN(K最近邻,k-NearestNeighbor)算法

    机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最 ...

  9. 机器学习十大算法 之 kNN(一)

    机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个" ...

  10. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

随机推荐

  1. gets()函数

    基本信息: 可以无限读取,不会判断上限,以回车结束读取(这个换行符也被读取了),所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出. 函数原型: char*gets(char*b ...

  2. Scala主构造器、私有构造器、构造器重载

    Scala中的主构造器跟在定义类的时候声明类名之后 如下: class scala(arg : String) { // } private[this] 修饰该字段只能被当前所对应的对象所访问,其他对 ...

  3. c++中vector与list的区别

    c++标准库中,容器vector和list都可以用来存放一组类型相同的数据.而且二者不同于数组的一点是,支持动态增长.但它们还是有有几点不同 (1)  vector是顺序表,表示的是一块连续的内存,元 ...

  4. MySQL read_only选项的作用

    1作用: 从字面意思上看就可以知道这个是把mysql设置为只读,但是这个只读只是针对一般用户而言的,对于root这种用super权限的用户read_only是没有用的. 2设置方式: set glob ...

  5. SQL Server 执行计划重编译的两大情况

    1.与正确性相关的重编译 1.为表或视图添加列,删除列. 2.为表添加约束.默认值.规则,删除约束.默认值.规则. 3.为表或视图添加索引. 4.如果计划用不用索引而这个索引被删除. 5.删除表中的统 ...

  6. WEKA,一个开源java的数据挖掘工具

    开始研究WEKA,一个开源java的数据挖掘工具. HS沉寂这么多天,谁知道偏偏在我申请离职的时候给我安排了个任务,哎,无语. 于是,今天看了一天的Weka. 主要是看了HS提供的三个文章(E文,在g ...

  7. umount.nfs device busy day virsh extend diskSpace, attachDisk

    KVM中linux虚拟机的硬盘添加方法 最近虚拟机中运行的东西比较多,很多.而刚启动的时候虚拟机分配的磁盘比较少,随着日志还有平时的上传文件的积累,磁盘空间报警了.网上查了下资料,自己也做了下实验.总 ...

  8. DBCP|C3P0参数详解

    1.<!-- 数据源1 --> 2. <bean id="dataSource" 3. class="org.apache.commons.dbcp.B ...

  9. codeigniter使用mongodb/redis

    ci2.x版本,使用mongodb,需要安装pecl-php-mongo扩展(github上很多扩展已不可用,找到个可用版本纪录于此),添加到php.ini中 使用如下 public function ...

  10. 前端新人学习笔记-------html/css/js基础知识点(二)

    4月7日学到的知识点:     一:<img src="1.png" alt="美女"/> alt是给图片添加介绍,当图片没加载出来时,会直接显示a ...