引言

在分布式架构中,MySQL与Elasticsearch(ES)的协同已成为解决高并发查询与复杂检索的标配组合。

然而,如何实现两者间的高效数据同步,是架构设计中绕不开的难题。

这篇文章跟大家一起聊聊MySQL同步ES的6种主流方案,结合代码示例与场景案例,帮助开发者避开常见陷阱,做出最优技术选型。

方案一:同步双写

场景:适用于对数据实时性要求极高,且业务逻辑简单的场景,如金融交易记录同步。

在业务代码中同时写入MySQL与ES。

代码如下:

@Transactional
public void createOrder(Order order) {
// 写入MySQL
orderMapper.insert(order);
// 同步写入ES
IndexRequest request = new IndexRequest("orders")
.id(order.getId())
.source(JSON.toJSONString(order), XContentType.JSON);
client.index(request, RequestOptions.DEFAULT);
}

痛点

  1. 硬编码侵入:所有涉及写操作的地方均需添加ES写入逻辑。
  2. 性能瓶颈:双写操作导致事务时间延长,TPS下降30%以上。
  3. 数据一致性风险:若ES写入失败,需引入补偿机制(如本地事务表+定时重试)。

方案二:异步双写

场景:电商订单状态更新后需同步至ES供客服系统检索。

我们可以使用MQ进行解耦。

架构图如下

代码示例如下

// 生产者端
public void updateProduct(Product product) {
productMapper.update(product);
kafkaTemplate.send("product-update", product.getId());
} // 消费者端
@KafkaListener(topics = "product-update")
public void syncToEs(String productId) {
Product product = productMapper.selectById(productId);
esClient.index(product);
}

优势

  • 吞吐量提升:通过MQ削峰填谷,可承载万级QPS。
  • 故障隔离:ES宕机不影响主业务链路。

缺陷

  • 消息堆积:突发流量可能导致消费延迟(需监控Lag值)。
  • 顺序性问题:需通过分区键保证同一数据的顺序消费。

方案三:Logstash定时拉取

场景:用户行为日志的T+1分析场景。

该方案低侵入但高延迟。

配置示例如下

input {
jdbc {
jdbc_driver => "com.mysql.jdbc.Driver"
jdbc_url => "jdbc:mysql://localhost:3306/log_db"
schedule => "*/5 * * * *" # 每5分钟执行
statement => "SELECT * FROM user_log WHERE update_time > :sql_last_value"
}
}
output {
elasticsearch {
hosts => ["es-host:9200"]
index => "user_logs"
}
}

适用性分析

  • 优点:零代码改造,适合历史数据迁移。
  • 致命伤
    • 分钟级延迟(无法满足实时搜索)
    • 全表扫描压力大(需优化增量字段索引)

方案四:Canal监听Binlog

场景:社交平台动态实时搜索(如微博热搜更新)。

技术栈:Canal + RocketMQ + ES

该方案高实时,并且低侵入。

架构流程如下

关键配置

# canal.properties
canal.instance.master.address=127.0.0.1:3306
canal.mq.topic=canal.es.sync

避坑指南

  1. 数据漂移:需处理DDL变更(通过Schema Registry管理映射)。
  2. 幂等消费:通过_id唯一键避免重复写入。

方案五:DataX批量同步

场景:将历史订单数据从分库分表MySQL迁移至ES。

该方案是大数据迁移的首选。

配置文件如下

{
"job": {
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": { "splitPk": "id", "querySql": "SELECT * FROM orders" }
},
"writer": {
"name": "elasticsearchwriter",
"parameter": { "endpoint": "http://es-host:9200", "index": "orders" }
}
}]
}
}

性能调优

  • 调整channel数提升并发(建议与分片数对齐)
  • 启用limit分批查询避免OOM

方案六:Flink流处理

场景:商品价格变更时,需关联用户画像计算实时推荐评分。

该方案适合于复杂的ETL场景。

代码片段如下

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.addSource(new CanalSource())
.map(record -> parseToPriceEvent(record))
.keyBy(event -> event.getProductId())
.connect(userProfileBroadcastStream)
.process(new PriceRecommendationProcess())
.addSink(new ElasticsearchSink());

优势

  • 状态管理:精准处理乱序事件(Watermark机制)
  • 维表关联:通过Broadcast State实现实时画像关联

总结:

对于文章上面给出的这6种技术方案,我们在实际工作中,该如何做选型呢?

下面用一张表格做对比:

方案 实时性 侵入性 复杂度 适用阶段
同步双写 秒级 小型单体项目
MQ异步 秒级 中型分布式系统
Logstash 分钟级 离线分析
Canal 毫秒级 高并发生产环境
DataX 小时级 历史数据迁移
Flink 毫秒级 极高 实时数仓

苏三的建议

  1. 若团队无运维中间件能力 → 选择Logstash或同步双写
  2. 需秒级延迟且允许改造 → MQ异步 + 本地事务表
  3. 追求极致实时且资源充足 → Canal + Flink双保险

最后说一句(求关注,别白嫖我)

如果这篇文章对您有所帮助,或者有所启发的话,帮忙关注一下我的同名公众号:苏三说技术,您的支持是我坚持写作最大的动力。

求一键三连:点赞、转发、在看。

关注公众号:【苏三说技术】,在公众号中回复:进大厂,可以免费获取我最近整理的50万字的面试宝典,好多小伙伴靠这个宝典拿到了多家大厂的offer。

MySQL同步ES的6种方案!的更多相关文章

  1. 组建MySQL集群的几种方案

    组建MySQL集群的几种方案LVS+Keepalived+MySQL(有脑裂问题?但似乎很多人推荐这个)DRBD+Heartbeat+MySQL(有一台机器空余?Heartbeat切换时间较长?有脑裂 ...

  2. MySQL集群的几种方案

    组建MySQL集群的几种方案LVS+Keepalived+MySQL(有脑裂问题?但似乎很多人推荐这个)DRBD+Heartbeat+MySQL(有一台机器空余?Heartbeat切换时间较长?有脑裂 ...

  3. mysql 同步数据到 ElasticSearch 的方案

    MySQL Binlog 要通过 MySQL binlog 将 MySQL 的数据同步给 ES, 我们只能使用 row 模式的 binlog.如果使用 statement 或者 mixed forma ...

  4. MySQL冗余数据的三种方案

    一,为什么要冗余数据 互联网数据量很大的业务场景,往往数据库需要进行水平切分来降低单库数据量. 水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非pa ...

  5. MySQL 同步复制及高可用方案总结

    1.前言 mysql作为应用程序的数据存储服务,要实现mysql数据库的高可用.必然要使用的技术就是数据库的复制,如果主节点出现故障可以手动的切换应用到从节点,这点相信运维同学都是知道,并且可以实现的 ...

  6. 浅谈MySQL同步到ElasticSearch的几种方式及其优缺点

    同步双写 优点:业务逻辑简单. 缺点: 硬编码,有需要写入mysql的地方都需要添加写入ES的代码: 业务强耦合: 存在双写失败丢数据风险: 性能较差:本来mysql的性能不是很高,再加一个ES,系统 ...

  7. 京东云开发者|mysql基于binlake同步ES积压解决方案

    1 背景与目标 1.1 背景 国际财务泰国每月月初账单任务生成,或者重算账单数据,数据同步方案为mysql通过binlake同步ES数据,在同步过程中发现计费事件表,计费结果表均有延迟,ES数据与My ...

  8. 防止服务器宕机时MySQL数据丢失的几种方案

    这篇文章主要介绍了防止服务器宕机时MySQL数据丢失的几种方案,结合实践介绍了Replication和Monitor以及Failover这三个项目的应用,需要的朋友可以参考下. 对于多数应用来说,My ...

  9. MySQL 到 ES 数据实时同步技术架构

    MySQL 到 ES 数据实时同步技术架构 我们已经讨论了数据去规范化的几种实现方式.MySQL 到 ES 数据同步本质上是数据去规范化多种实现方式中的一种,即通过"数据迁移同步" ...

  10. kettle 多表全删全插同步数据 两种方案

    背景: 接到上级指示,要从外网某库把数据全部导入到内网,数据每天更新一次即可,大约几百万条数据,两个库结构一样,mysql的,两台数据库所在服务器都是windows server的,写个java接口实 ...

随机推荐

  1. 并发编程 - 线程同步(九)之信号量Semaphore

    前面对自旋锁SpinLock进行了详细学习,今天我们将学习另一个种同步机制--信号量Semaphore. 01.信号量是什么? 在 C# 中,信号量(Semaphore)是一种用于线程同步的机制,能够 ...

  2. 【效能提升】上线前漏了SQL脚本,漏加上某个配置项了?

    背景 一个版本从开始开发到上线,可能经历10多天,甚至更久. 由于这个过程的时间较长,难免出现某些需要执行的SQL脚本.需要配置的配置项,到了上线前,却被遗漏了,最后导致出现线上问题才发现. 我们团队 ...

  3. mybatis - [07] 模糊查询

    题记部分 (1)mapper类 List<User> getUserLike(String value); (2)mapper.xml <!-- 写法1 --> <sel ...

  4. Linux - 开启FTP服务

    vsftpd 一.Centos6.x配置ftp 1.1.安装OpenSSH-server OpenSSH-server包含了FTP服务,通常,CentOS6.x默认已经安装了OpenSSH-serve ...

  5. C#开发手册

    一. 编码规范 (一)[强制]命名规范:所有命名(类名.属性名.变量名.常量名.属性名)必须以字母开头(a-z.A-Z),不能以特殊字符(_.$)开头.         1.[强制]类名命名规则:大驼 ...

  6. factor

    factor easy_factor1 task.py from Crypto.Util.number import * from Crypto.Util.Padding import * from ...

  7. Navicat 数据库如何再次打开恢复上次的页面

    选项->选项卡->从上次离开的画面继续 2.其他软件有这个需求也可以在设置里找一找!

  8. pandas 判断列是否包含某个字符串

    亲测第二种好用 in 语句 不包含使用not in food = df['日期'].values.tolist() if '休息' in food: print(food) if df['共计小时'] ...

  9. 关于我这周的kotlin的学习:

    今天学习了kotlin方法的参数和一些lambda的一些知识,其中也是和我们上次日报中讲的方法一样,有三种分类,默认参数,具名参数,可变数量的参数.和以前一样,我们举个例子来理解这个知识点:先是默认方 ...

  10. libvirt和qga的区别?

    本文分享自天翼云开发者社区<libvirt和qga的区别?>,作者:乐道 Libvirt是一个开源项目,提供了一组API.工具.库,用于管理和控制虚拟化平台. 在Openstack环境中, ...