Java排序算法——拓扑排序
package graph; import java.util.LinkedList;
import java.util.Queue; import thinkinjava.net.mindview.util.Stack; //类名:Vertex
//属性:
//方法:
class Vertex{
public char label; //点的名称,如A
public boolean wasVisited; public Vertex(char lab){ //构造函数
label = lab;
wasVisited = false;
}
} //类名:Graph
//属性:
//方法:
class Graph{
private final int MAX_VERTS = 20;
private Vertex vertexList[]; //顶点列表数组
private int adjMat[][]; //邻接矩阵
private int nVerts; //当前的顶点
private char sortedArray[]; public Graph(){ //构造函数
vertexList = new Vertex[MAX_VERTS];
adjMat = new int[MAX_VERTS][MAX_VERTS];
nVerts = 0;
for(int j=0;j<MAX_VERTS;j++){
for(int k=0;k<MAX_VERTS;k++)
adjMat[j][k] = 0;
}
sortedArray = new char[MAX_VERTS];
} public void addVertex(char lab){ //添加新的顶点,传入顶点的lab,并修改nVerts
vertexList[nVerts++] = new Vertex(lab);
} public void addEdge(int start,int end){ //添加边,这里是无向图
adjMat[start][end] = 1;
//adjMat[end][start] = 1;
} public void displayVertex(int v){ //显示顶点
System.out.print(vertexList[v].label);
} public int getAdjUnvisitedVertex(int v){ //返回一个和v邻接的未访问顶点
for(int j=0;j<nVerts;j++)
if(adjMat[v][j] == 1 && vertexList[j].wasVisited == false){
return j;
}
return -1; //如果没有,返回-1
} public void dfs(){ //深度搜索
Stack<Integer> theStack = new Stack<Integer>();
vertexList[0].wasVisited = true;
displayVertex(0);
theStack.push(0); //把根入栈 while(!theStack.empty()){
int v = getAdjUnvisitedVertex(theStack.peek());//取得一个和栈顶元素邻接的未访问元素
if(v == -1) //如果没有和栈顶元素邻接的元素,就弹出这个栈顶
theStack.pop();
else{ //如果有这个元素,则输出这个元素,标记为已访问,并入栈
vertexList[v].wasVisited = true;
displayVertex(v);
theStack.push(v);
}
}
for(int j=0;j<nVerts;j++) //全部置为未访问
vertexList[j].wasVisited = false;
} public void bfs(){ //广度搜索
Queue<Integer> theQueue = new LinkedList<Integer>();
vertexList[0].wasVisited = true;
displayVertex(0);
theQueue.offer(0); //把根入队列
int v2; while(!theQueue.isEmpty()){
int v1 = theQueue.remove();//v1记录第1层的元素,然后记录第2层第1个元素... while((v2=getAdjUnvisitedVertex(v1)) != -1){//输出所有和第1层邻接的元素,输出和第2层第1个元素邻接的元素...
vertexList[v2].wasVisited = true;
displayVertex(v2);
theQueue.offer(v2);
}
} for(int j=0;j<nVerts;j++) //全部置为未访问
vertexList[j].wasVisited = false;
} public void mst(){ //基于深度搜索的最小生成树
Stack<Integer> theStack = new Stack<Integer>();
vertexList[0].wasVisited = true;
theStack.push(0); //把根入栈 while(!theStack.empty()){
int currentVertex = theStack.peek(); //记录栈顶元素,当有为邻接元素的时候,才会输出
int v = getAdjUnvisitedVertex(theStack.peek());//取得一个和栈顶元素邻接的未访问元素
if(v == -1) //如果没有和栈顶元素邻接的元素,就弹出这个栈顶
theStack.pop();
else{ //如果有这个元素,则输出这个元素,标记为已访问,并入栈
vertexList[v].wasVisited = true;
theStack.push(v); displayVertex(currentVertex);
displayVertex(v);
System.out.println();
}
}
for(int j=0;j<nVerts;j++) //全部置为未访问
vertexList[j].wasVisited = false;
} public int noSuccessors(){ //使用邻接矩阵找到没有后继的顶点,有后继顶点返回行数,没有返回-1
boolean isEdge; for(int row=0;row<nVerts;row++){//从第1行开始
isEdge = false;
for(int col=0;col<nVerts;col++){//如果某一行某一列为1,返回这个行的行数
if(adjMat[row][col] > 0){
isEdge = true;
break;
}
}
if(!isEdge)
return row;
}
return -1;
} public void moveRowUp(int row,int length){
for(int col=0;col<length;col++)
adjMat[row][col] = adjMat[row+1][col];
} public void moveColLeft(int col,int length){
for(int row=0;row<length;row++)
adjMat[row][col] = adjMat[row][col+1];
} public void deleteVertex(int delVert){
if(delVert != nVerts-1){
for(int j=delVert;j<nVerts-1;j++)//在数组中去掉这个顶点
vertexList[j] = vertexList[j+1];
for(int row=delVert;row<nVerts-1;row++)//在邻接矩阵中把删除的这一行下的所有行上移
moveRowUp(row,nVerts);
for(int col=delVert;col<nVerts-1;col++)//在邻接矩阵中把删除的这一列下的所有列左移
moveColLeft(col,nVerts-1);
}
nVerts--;
} public void topo(){ //拓扑排序,必须在无环的有向图中进行,必须在有向图中
int orig_nVerts = nVerts; //记录有多少个顶点 while(nVerts > 0){
int currentVertex = noSuccessors();
if(currentVertex == -1){
System.out.println("错误:图含有环!");
return;
}
sortedArray[nVerts-1] = vertexList[currentVertex].label;
deleteVertex(currentVertex);
}
System.out.println("拓扑排序结果:");
for(int j=0;j<orig_nVerts;j++)
System.out.println(sortedArray[j]); } } public class graph_demo { public static void main(String[] args) {
// TODO 自动生成的方法存根
Graph theGraph = new Graph();
theGraph.addVertex('A'); //数组元素0
theGraph.addVertex('B'); //数组元素1
theGraph.addVertex('C'); //数组元素2
theGraph.addVertex('D'); //数组元素3
theGraph.addVertex('E'); //数组元素4 // theGraph.addEdge(0, 1); //AB
// theGraph.addEdge(1, 2); //BC
// theGraph.addEdge(0, 3); //AD
// theGraph.addEdge(3, 4); //DE // System.out.println("dfs访问的顺序:");
// theGraph.dfs();
// System.out.println();
//
// System.out.println("bfs访问的顺序:");
// theGraph.bfs(); // theGraph.addEdge(0, 1); //AB
// theGraph.addEdge(0, 2); //AC
// theGraph.addEdge(0, 3); //AD
// theGraph.addEdge(0, 4); //AE
// theGraph.addEdge(1, 2); //BC
// theGraph.addEdge(1, 3); //BD
// theGraph.addEdge(1, 4); //BE
// //theGraph.addEdge(2, 3); //CD
// //theGraph.addEdge(2, 4); //CE
// theGraph.addEdge(3, 4); //DE // System.out.println("最小生成树:");
// theGraph.mst(); theGraph.addVertex('F'); //数组元素5
theGraph.addVertex('G'); //数组元素6
theGraph.addVertex('H'); //数组元素6 theGraph.addEdge(0, 3); //AD
theGraph.addEdge(0, 4); //AE
theGraph.addEdge(1, 4); //BE
theGraph.addEdge(2, 5); //CF
theGraph.addEdge(3, 6); //DG
theGraph.addEdge(4, 6); //EG
theGraph.addEdge(5, 7); //FH
theGraph.addEdge(6, 7); //GH theGraph.topo();
} }
Java排序算法——拓扑排序的更多相关文章
- AOV网络和Kahn算法拓扑排序
1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题. 一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...
- 经典排序算法 - 高速排序Quick sort
经典排序算法 - 高速排序Quick sort 原理,通过一趟扫描将要排序的数据切割成独立的两部分,当中一部分的全部数据都比另外一部分的全部数据都要小,然后再按此方法对这两部分数据分别进行高速排序,整 ...
- 排序算法--希尔排序(Shell Sort)_C#程序实现
排序算法--希尔排序(Shell Sort)_C#程序实现 排序(Sort)是计算机程序设计中的一种重要操作,也是日常生活中经常遇到的问题.例如,字典中的单词是以字母的顺序排列,否则,使用起来非常困难 ...
- 排序算法--选择排序(Selection Sort)_C#程序实现
排序算法--选择排序(Selection Sort)_C#程序实现 排序(Sort)是计算机程序设计中的一种重要操作,也是日常生活中经常遇到的问题.例如,字典中的单词是以字母的顺序排列,否则,使用起来 ...
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...
- 数据结构和算法(Golang实现)(22)排序算法-希尔排序
希尔排序 1959 年一个叫Donald L. Shell (March 1, 1924 – November 2, 2015)的美国人在Communications of the ACM 国际计算机 ...
- 使用 js 实现十大排序算法: 桶排序
使用 js 实现十大排序算法: 桶排序 桶排序 refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!
- 使用 js 实现十大排序算法: 计数排序
使用 js 实现十大排序算法: 计数排序 计数排序 refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!
- 使用 js 实现十大排序算法: 希尔排序
使用 js 实现十大排序算法: 希尔排序 希尔排序 refs xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!
随机推荐
- 测试几个xml的问题
使用sql server的时候,免不了与xml的参数打交道,xml大多数时候都给我们的程序带来方便,但是也有些时候会有变量赋值不通过的时候.(当然罗,如果你本身xml都通不过 xml spy 之类软件 ...
- Spring中多配置文件以及寻觅引用其他bean的方式
Spring多配置文件有什么好处? 按照目的.功能去拆分配置文件,可以提高配置文件的可读性与维护性,如将配置事务管理.数据源等少改动的配置与配置bean单独分开. Spring读取配置文件的几种方式: ...
- android radiogroup样式(设置切换背景与文字颜色)
main.xml <RadioGroup android:id="@+id/radioGroup1" android:layout_width="wrap_cont ...
- localhost与127.0.0.1的区别
localhost与127.0.0.1的区别是什么 定义 localhost也叫local ,正确的解释是:本地服务 127.0.0.1在windows等系统的正确解释是:本机地址(本机服务器) 不同 ...
- 3. Python 简介
3. Python 简介 下面的例子中,输入和输出分别由大于号和句号提示符 ( >>> 和 ... ) 标注:如果想重现这些例子,就要在解释器的提示符后,输入 (提示符后面的) 那些 ...
- 系统集成方案(一).NET集成方案
NET系统集成有自己独立的登录验证方式.比如,跟报表集成时,不需要再使用报表内置的登录界面,只需要将报表默认的参数用户名fr_username和密码fr_password发送给报表系统,触发一下报表验 ...
- SSTABLE简介
SSTABLE数据组织:http://blog.csdn.net/tankles/article/details/7663905
- 【2016-11-1】【坚持学习】【Day16】【MongoDB】【复制集 分片】
Mongodb 两种集群方式 复制集 通常是一主一从,一主多从 mongodb的复制至少需要两个节点.其中一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据. mongodb各 ...
- 查看eclipse web项目中jsp编译后的servlet源文件【转】【JSP】
eclipse中,jsp编译后 servlet源文件的位置为: F:\workspace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wor ...
- POJ2167Irrelevant Elements[唯一分解定理 组合数 杨辉三角]
Irrelevant Elements Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2407 Accepted: 59 ...