题目链接:http://poj.org/problem?id=2533

Time Limit: 2000MS Memory Limit: 65536K

Description

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

题意:

给定长度为 $N$ 的一串整数序列 $a[1 \sim N]$,求其最长上升子序列的长度。

注意:子序列可以不连续,要求严格单增。

题解:

$O(n \log n)$ 解法——贪心+二分。

构建一个栈 $S$ 和一个变量 $top$ 代表栈顶位置,该栈的代表:栈中的第 $i$ 个数 $S[i]$,是序列 $a$ 中,长度为 $i$ 的递增子序列的末尾元素。

初始化 S[top=]=a[] ,即将第一个数字入栈;这很好理解,到目前为止 $a[1]$ 自己是一个长度为 $1$ 的递增子序列。

遍历 $a[ i = 2 \sim N ]$:每次对于 $a[i]$,找出栈 $S[1 \sim top]$ 中第一个大于等于 $a[i]$ 的数的位置 $pos$,若不存在则返回 $pos=top+1$。

这是由于,若存在第一个大于等于 $a[i]$ 的数 $S[pos]$ ,说明对于长度为 $pos$ 的递增子序列,可以用 $a[i]$ 代替掉其原来的末尾元素 $S[pos]$,这样一来,依然是一个长度为 $pos$ 的递增子序列,而且该递增子序列被进一步“加长”的潜力增加。而如果栈中不存在大于等于 $a[i]$ 的数,这说明我可以在目前长度为 $top$ 的递增子序列后面加上一个 $a[i]$,那么我们就得到了一个以 $a[i]$ 为结尾的,长度为 $top+1$ 的递增子序列。

因此,我们把 $S[pos]$ 更新为 $a[i]$,并且尝试更新栈的大小 if(pos>top) top=pos;  。

由于栈 $S$ 中元素始终保持单调递增(而且栈内元素互不相等),所以找 $S$ 中第一个大于等于 $a[i]$ 的数可以使用二分查找。

AC代码(在OpenJudge百练提交):

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+; int n;
vector<int> a; int S[maxn],top;
int LIS(const vector<int>& a)
{
S[top=]=a[];
for(int i=;i<a.size();i++)
{
int pos=lower_bound(S,S+top+,a[i])-S;
S[pos]=a[i], top=max(top,pos);
}
return top+;
} int main()
{
cin>>n;
while(n--)
{
int x; cin>>x;
a.push_back(x);
}
cout<<LIS(a)<<endl;
}

PS.我们可以看到,求第一个大于等于 $a[i]$ 的数使用了lower_bound,相应的如果我们使用upper_bound会怎么样呢?不难证明,我们将会得到最长不下降子序列的长度。

POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]的更多相关文章

  1. poj 2533 Longest Ordered Subsequence 最长递增子序列

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098562.html 题目链接:poj 2533 Longest Ordered Subse ...

  2. poj 2533 Longest Ordered Subsequence 最长递增子序列(LIS)

    两种算法 1.  O(n^2) #include<iostream> #include<cstdio> #include<cstring> using namesp ...

  3. POJ 2533 Longest Ordered Subsequence 最长递增序列

      Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

  4. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  5. POJ 2533 Longest Ordered Subsequence(裸LIS)

    传送门: http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  6. Poj 2533 Longest Ordered Subsequence(LIS)

    一.Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequenc ...

  7. POJ - 2533 Longest Ordered Subsequence与HDU - 1257 最少拦截系统 DP+贪心(最长上升子序列及最少序列个数)(LIS)

    Longest Ordered Subsequence A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let ...

  8. 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)

    Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...

  9. POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)

    传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...

随机推荐

  1. sql server 2008 windows验证改为混合登陆SqlServer身份验证用户名密码

    安装过程中,SQL Server 数据库引擎设置为 Windows 身份验证模式或 SQL Server 和 Windows 身份验证模式.本主题介绍如何在安装后更改安全模式. 如果在安装过程中选择“ ...

  2. thymeleaf : input/select/radio回显

    thymeleaf中不用自己去写checked="checked" selected="selected"这种代码,他自己会选. input <input ...

  3. RTF文件格式

    文档地址 首先给出一个生成最简单的RTF文件的脚本 f=open('hello_world.rtf','w') padding='{\\rtf1\\ansi' padding+=' Hello Wor ...

  4. innodb表碎片处理

    本次测试环境是 mysql 5.7.23,表空间为每个表单独表空间 mysql> sHOW VARIABLES LIKE 'innodb_file_per_tabl%'; +---------- ...

  5. 解决 Composer-Setup.exe 安装过程中的报错

    问题 在 Windows 7 执行 Composer-Setup.exe 以安装 Composer 过程中 上图中点击[Next]时,出现如下报错信息 原因分析 由上述提示信息,可推测两方面原因: 1 ...

  6. MUI初学1

    1.1)官网: http://www.dcloud.io/ 2)案例: http://www.dcloud.io/case/#group-1 3)文档:http://dev.dcloud.net.cn ...

  7. hdu4352 数位dp+状态压缩+一个tip

    按照nlogn求lis的方法,把lis的状态压缩了,每次新加一个数就把它右边第一个数的位置置为0,然后把这个数加进去 一个需要注意的地方,如果前面都是0,那么状态s中代表0的位置不可以是1,因为这种情 ...

  8. spring Boot异步操作报错误: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type 'com.self.spring.springboot.Jeep' available

    我也是最近开始学习Spring Boot,在执行异步操作的时候总是汇报如下的错误: Exception in thread "main" org.springframework.b ...

  9. 如何解决 kubernetes 重启后,启来不来的问题

    参考了 https://blog.csdn.net/nklinsirui/article/details/80855415 最近在调研 kubeneter ,准备把线上的服务器架构再调整下,然后模拟各 ...

  10. + CategoryInfo : NotSpecified: (:) [], PSSecurityException + FullyQualifiedErrorId : RuntimeException

    File C:\Users\danv\Documents\WindowsPowerShell\profile.ps1 cannot be loaded because the execution of ...