Concept of function continuity in topology
Understanding of continuity definition in topology
When we learn calculus in university as freshmen, we are usually force-fed with the \(\epsilon-\delta\) language for the definition of a function’s continuity, i.e.
A function \(f: A \rightarrow \mathbb{R}\) with \(A \subseteq \mathbb{R}\) as its domain is continuous at \(x_0 \in A\) if for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that whenever \(x \in A\) and \(\left\vert x - x_0 \right\vert < \delta\), there is \(\vert f(x) - f(x_0) \vert < \epsilon\).
Although the abstract and formal \(\epsilon-\delta\) language is not easy to get used to at first, the idea embodied in the definition is obvious: any small amount of deviation or error around \(f(x_0)\) is procurable by making a corresponding perturbation about \(x_0\), so that the function does not have significant jump at \(x_0\) and is thus considered to be continuous.
In topology, the definition of continuity is based on open sets, which is more abstract compared to the above tangible version, i.e.
Let \(X\) and \(Y\) be topological spaces. \(f: X \rightarrow Y\) is a continuous function if for all open set \(V\) in \(Y\), its pre-image \(U = f^{-1}(V)\) is open in \(X\). For a point \(x_0 \in X\) and each neighborhood \(V\) of \(f(x_0)\), there is a neighborhood \(U\) of \(x_0\) such that \(f(U) \subset V\), we say the function is continuous at \(x_0\).
At first glance, this definition seems merely a product of a mathematician’s endowment, which just works and needs no psychological acceptance. However, it is never a good luck by chance, but requires an understanding with profundity and discernment, which explores the topological essence underpinning the metric space \(\mathbb{R}\).
Take the definition of sequence convergence as an analogy. Its definition in the normal metric space \(\mathbb{R}\), which we are familiar with, is based on the absolute value of real numbers for measuring point proximity, while its definition in a general topological space involves only point inclusion in open sets, i.e.
Let \(X\) be a topological space and \(\{x_n\}_{n \geq 1}\) be a sequence in \(X\). We say \(\{x_n\}_{n \geq 1}\) converges to a point \(x_0\) in \(X\) if for any neighborhood \(U\) of \(x_0\), there exists a \(N\) in \(\mathbb{Z}_+\), such that when \(n > N\), \(x_n\) belongs to \(U\).
From this it can be seen that the notion of metric or distance is discarded in the topological space, where the rulers for measuring point proximity degenerates to a collection of open sets. Because set inclusion relation establishes a partial order on this open set collection, the meaning of metric or distance is still kept to some extent. Assume that we select a collection of nested open sets (forming a chain in the order relation) as rulers to measure point convergence. The smaller the open set used to circumscribe a segment of the sequence \(\{x_n\}_{n \geq 1}\), the closer they approach the limiting point \(x_0\). This concept is illustrated below.

Fig. Convergence of a sequence of points in topological space.
Similarly, for the definition of function continuity in pure topological spaces, the only tool for measuring the amount of deviation or error about a point \(x_0\) and its function value \(f(x_0)\) is using open sets. The smaller the open set, the finer the measuring resolution. If the function value can be limited within any neighborhood of \(f(x_0)\) by confining the variation of \(x\) around \(x_0\) in \(X\), we can say that the set of rulers selected from \(Y\), viz. its topology, has tried its best to ensure the function’s continuity at \(x_0\). It is easy to project that the finer the topology of \(Y\) and the coarser the topology of \(X\), the more difficult for the function to be continuous, due to the improved resolution of the rulers in \(Y\) which leads to smaller variation of \(f(x_0)\) and the reduced resolution of the rulers in \(X\) which can only produce larger perturbation on \(x_0\).
Then, looking back at the definition of function continuity in metric space \(\mathbb{R}\), the basis elements of its topology can be infinitesimally small, i.e. \((a, b)\) can have a length approaching zero. Therefore, the continuous functions we meet in college calculus are actually defined in a very strict sense and it’s no doubt that they exhibit elegant silhouettes. Meanwhile, we also see that the continuity of a function not only relies on its rule of assignment, but also on the adopted topologies.
Equivalence between the two definitions
After clarifying the concepts of function continuity, we will show the equivalence between its two definitions, the \(\epsilon-\delta\) version and the open set version.
Open set version \(\Longrightarrow\) \(\epsilon-\delta\) version
Let \(y = f(x)\) and \(y_0 = f(x_0)\). The condition \(\vert y - y_0 \vert < \epsilon \) forms an open interval in \(Y = \mathbb{R}\), i.e. \((y_0 - \epsilon, y_0 + \epsilon)\) for any \(\epsilon > 0\), which is a basis element of the metric topology on \(Y\) (and also of its order topology). Then, according to the open set version, \(f^{-1} ((y_0 - \epsilon, y_0 + \epsilon))\) is open in \(X\). Because \(y_0 \in (y_0 - \epsilon, y_0 + \epsilon)\), \(x_0 \in f^{-1}((y_0 - \epsilon, y_0 + \epsilon))\). Then there exists a basis element \((a, b)\) around \(x_0\), such that \((a, b) \subset f^{-1}((y_0 - \epsilon, y_0 + \epsilon))\). By letting \(\delta = \min\{x_0 - a, b - x_0\}\), we have \(x \in (x_0 - \delta, x_0 + \delta)\), i.e. \(\vert x - x_0 \vert < \delta\) ensuring \(\vert y - y_0 \vert < \epsilon\).
\(\epsilon-\delta\) version \(\Longrightarrow\) open set version
Let \(V\) be an open set in \(Y = \mathbb{R}\) assigned with the metric topology.Then for all \(y_0 \in V\), there exists an open interval \((c, d) \) containing \(y_0\), such that \((c, d) \subset V\). Let \(\epsilon = \min\{y_0 - c, d - y_0\}\), we have \(y_0 \in (y_0 - \epsilon, y_0 + \epsilon) \subset V\). According to the given \(\epsilon-\delta\) version, there exists a \(\delta > 0\) such that when \({\rm dist}_X (x, x_0) = \vert x - x_0 \vert < \delta\), \({\rm dist}_Y(y, y_0) = \vert y - y_0 \vert < \epsilon\). It should be noted here that because \(f\) may not be injective, there could be more than one element in \(f^{-1}(y_0)\). Then the above \(\epsilon-\delta\) condition holds for any \(x_0\) selected from \(f^{-1}(y_0)\).
Because \(y_0\) is arbitrary in \(V\) and \(x_0\) is arbitrary in \(f^{-1}(y_0)\), taking the union of all such open intervals \((x_0 - \delta, x_0 + \delta)\) will produce \(f^{-1}(V)\), which is also an open set in \(X\).
Concept of function continuity in topology的更多相关文章
- Summary of continuous function spaces
In general differential calculus, we have learned the definitions of function continuity, such as fu ...
- VES Hand Book Contents
3...ABOUT THE VES4...Foreword 6...Chapter 1......Introduction6......Visual Effects and Special Effec ...
- 使用随机森林实现OSM路网城市多车道信息提取
Multilane roads extracted from the OpenStreetMap urban road network using random forests.,DOI:10.111 ...
- 专题:Channel Bonding/bonding
EtherChannel最初是由cisco提出,通过聚合多条物理链路为单条逻辑链路,从而实现高可用及提高吞吐量等目的.AgP(Port Aggregation Protocol,Cisco专有协议). ...
- 快速稳定的维护PHP
Just to recap, previously we'd have this sort of thing: namespace me\adamcameron\testApp; use Guzzle ...
- 如何实现标准TCODE的屏幕增强
如何实现标准TCODE的屏幕增强(HOWTO:Implement a screen exit to a standard SAP transaction) Introduction SAP provi ...
- 网络爬虫系统Heritrix的结构分析 (个人读书报告)
摘要 随着网络时代的日新月异,人们对搜索引擎,网页的内容,大数据处理等问题有了更多的要求.如何从海量的互联网信息中选取最符合要求的信息成为了新的热点.在这种情况下,网络爬虫框架heritrix出现 ...
- A Plain English Guide to JavaScript Prototypes
When I first started learning about JavaScript object model my reaction was of horror and disbelief. ...
- 用NPOI实现导入导出csv、xls、xlsx数据功能
用NPOI实现导入导出csv.xls.xlsx数据功能 直接上代码 首先定义一个接口 如果需要直接操作文件的话,就自己在封装一次 然后定义csv类的具体实现 这个需要引入命名空间LumenWo ...
随机推荐
- Flask的插件session、SQLAlchemy、Script、Migrate
一.flask-session 1.为什么要使用flask-session 因为flask默认的session是通过请求上下文放入到Local中的,是存在内存的,而使用flask-session可以更 ...
- 获取本地的jvm信息,进行图形化展示
package test1; import java.lang.management.CompilationMXBean; import java.lang.management.GarbageCol ...
- python之旅十【第十篇】paramiko模块
paramiko模块介绍 ssh的远程连接 基于用户名密码的连接 import paramiko # 创建SSH对象 ssh = paramiko.SSHClient() # 允许连接不在know_h ...
- P2495 [SDOI2011]消耗战 lca倍增+虚树+树形dp
题目:给出n个点的树 q次询问 问切断 k个点(不和1号点联通)的最小代价是多少 思路:树形dp sum[i]表示切断i的子树中需要切断的点的最小代价是多少 mi[i]表示1--i中的最小边权 ...
- Django+Vue打造购物网站(七)
个人中心功能开发 drf文档注释 http://www.django-rest-framework.org/topics/documenting-your-api/ 动态设置serializer和pe ...
- 如何打印consul的错误信息
在配置文件中添加 management: endpoints: web: exposure: include: "*" endpoint: shutdown: enabled: t ...
- MongoDB用户及数据库管理命令
1.用户管理: 连接数据库: mongo 127.0.0.1:27017 切换到admin数据库: > use admin 创建管理员账户: db.createUser( { user: &qu ...
- 实战Google深度学习框架-C3-TensorFlow入门
第三章:TensorFlow入门 TensorFlow存在计算模型,数据模型和运算模型(本文用TF代表TensorFlow) 3.1 计算模型-计算图 3.1.1 计算图的概念 TensorFlow这 ...
- mycat 使用
介绍 支持SQL92标准 支持MySQL.Oracle.DB2.SQL Server.PostgreSQL等DB的常见SQL语法 遵守Mysql原生协议,跨语言,跨平台,跨数据库的通用中间件代理. 基 ...
- JDBC 关闭数据库连接与自动提交【转】
// Jdbc关闭数据库连接时,会隐含一个提交事务的操作 private final static String DB_DRIVER = "oracle.jdbc.driver.Oracle ...