题目显然可以转化为求每一条边对二分图最大独立集的贡献,二分图最大独立集\(=\)点数\(-\)最大匹配数,我们就有了\(50pts\)做法。

正解的做法是在原图上跑\(Tarjan\),最开始我想复杂了,后来才意识到,只要存在这样一个强连通分量,那么断掉分量内的任意一条边都不会破坏其连通性,即不管删掉哪个连边都一定会有新的匹配补充。只要让两个点不在同一个分量里面,而且原来是满流的(匹配可行边),那么它就是一个可用边(匹配必须边)。

#include <bits/stdc++.h>
using namespace std; const int N = 400010;
const int M = 800010;
const int INF = 0x3f3f3f3f; struct Graph {
int cnt, head[N]; struct edge {int nxt, to, f;}e[M]; Graph () {
cnt = -1;
memset (head, -1, sizeof (head));
} void add_edge (int u, int v, int f) {
e[++cnt] = (edge) {head[u], v, f}; head[u] = cnt;
} void add_len (int u, int v, int f) {
add_edge (u, v, f);
add_edge (v, u, 0);
} queue <int> q;
int cur[N], deep[N]; bool bfs (int s, int t) {
memcpy (cur, head, sizeof (head));
memset (deep, 0x3f, sizeof (deep));
deep[s] = 0; q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == INF && e[i].f) {
deep[v] = deep[u] + 1;
q.push (v);
}
}
}
return deep[t] != INF;
} int dfs (int u, int t, int lim) {
if (u == t || !lim) {
return lim;
}
int tmp = 0, flow = 0;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == deep[u] + 1) {
tmp = dfs (v, t, min (lim, e[i].f));
lim -= tmp;
flow += tmp;
e[i ^ 0].f -= tmp;
e[i ^ 1].f += tmp;
if (!lim) break;
}
}
return flow;
} int Dinic (int s, int t) {
int max_flow = 0;
while (bfs (s, t)) {
max_flow += dfs (s, t, INF);
}
return max_flow;
}
}G; int n, m, _ans, id[N]; struct Query {
int u, v; bool operator < (Query rhs) const {
return u == rhs.u ? v < rhs.v : u < rhs.u;
} bool operator == (Query rhs) const {
return u == rhs.u && v == rhs.v;
}
}q[N], ans[N]; int A (int x) {return n * 0 + x;}
int B (int x) {return n * 1 + x;} int read () {
int s = 0, w = 1, ch = getchar ();
while ('9' < ch || ch < '0') {
if (ch == '-') w = -1;
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * w;
} stack <int> sta;
int dfn[N], low[N], col[N], vis[N]; void Tarjan (int u) {
sta.push (u);
vis[u] = true;
dfn[u] = low[u] = ++dfn[0];
for (int i = G.head[u]; ~i; i = G.e[i].nxt) {
int v = G.e[i].to;
if (!G.e[i].f) continue;
if (!dfn[v]) {
Tarjan (v);
low[u] = min (low[u], low[v]);
} else if (vis[v]) {
low[u] = min (low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
int tmp; ++col[0];
do {
tmp = sta.top ();
vis[tmp] = false;
col[tmp] = col[0];
sta.pop ();
}while (tmp != u);
}
} int main () {
cin >> n >> m;
int s = n * 2 + 1;
int t = n * 2 + 2;
for (int i = 1; i <= m; ++i) {
q[i].u = read ();
q[i].v = read ();
if (q[i].u > q[i].v) {
swap (q[i].u, q[i].v);
}
}
sort (q + 1, q + 1 + m);
for (int i = 1; i <= m; ++i) {
id[i] = G.cnt + 1;
G.add_len (A (q[i].u), B (q[i].v), 1);
G.add_len (A (q[i].v), B (q[i].u), 1);
}
for (int i = 1; i <= n; ++i) {
G.add_len (s, A (i), 1);
G.add_len (B (i), t, 1);
}
G.Dinic (s, t);
for (int i = 1; i <= t; ++i) {
if (!dfn[i]) {
Tarjan (i);
}
}
for (int i = 1; i <= m; ++i) {
if (col[A (q[i].u)] != col[B (q[i].v)] && !G.e[id[i]].f) {
ans[++_ans] = q[i];
}
}
cout << _ans << endl;
for (int i = 1; i <= _ans; ++i) {
printf ("%d %d\n", ans[i].u, ans[i].v);
}
}

Luogu P3731 [HAOI2017]新型城市化的更多相关文章

  1. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  2. P3731 [HAOI2017]新型城市化(tarjan+网络流)

    洛谷 题意: 给出两个最大团的补图,现在要求增加一条边,使得最大最大团个数增加至少\(1\). 思路: 我们求出团的补图,问题可以转换为:对于一个二分图,选择删掉一条边,能够增大其最大独立集的点集数. ...

  3. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

  4. 求去掉一条边使最小割变小 HAOI2017 新型城市化

    先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化

  5. HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点

    题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...

  6. LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】

    题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...

  7. [HAOI2017] 新型城市化

    给出的图中恰包含2个团,则图的补图为一个二分图,其最大独立集为原图的最大团. 我们知道,二分图的最大独立集=V-最小顶点覆盖,最小顶点覆盖=最大匹配. 问题转化为:计算删去后最大匹配减小的边集. 所以 ...

  8. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  9. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

随机推荐

  1. HDFS副本放置策略

    1.第一个副本放置在上传文件的DataNode上,如果是集群外提交,则随机挑选一个磁盘不太满,CPU不太忙的节点. 2.第二个副本放置在与第一个副本不同的机架上. 3.第三个副本放置在与第二个副本同机 ...

  2. MySQL 基础知识梳理学习(五)----详解MySQL两次写的设计及实现

    一 . 两次写提出的背景或要解决的问题 两次写(InnoDB Double Write)是Innodb中很独特的一个功能点.因为Innodb中的日志是逻辑的,所谓逻辑就是比如插入一条记录时,它可能会在 ...

  3. 伙伴系统之避免碎片--Linux内存管理(十六)

    1 前景提要 1.1 碎片化问题 分页与分段 页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信 ...

  4. Linux 文件权限管理

    1.文件权限的概述 在Linux系统下,使用权限来保护资源的安全将是一种不错的选择.系统中每个文件的权限都有可读(r).可写(w)和可执行(x)这三种权限,它们分别对应权限数值4.2 和1.系统为每个 ...

  5. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  6. phoenix API服务发布

    概述 Elixir 的 Phoenix 框架对于开发 Web 应用非常方便,不仅有 RoR 的便利,还有 Erlang 的性能和高并发优势. 但是应用的发布涉及到 Erlang 和 Elixir 环境 ...

  7. 爬虫系列二(数据清洗--->bs4解析数据)

    一 BeautifulSoup解析 1 环境安装 - 需要将pip源设置为国内源,阿里源.豆瓣源.网易源等 - windows (1)打开文件资源管理器(文件夹地址栏中) (2)地址栏上面输入 %ap ...

  8. JS检测浏览器是否最大化

    function isFullScreen (){     if(         window.outerHeight === screen.availHeight     ){         i ...

  9. IDEA+快捷键

    格式化代码:ctrl+alt+L IDEA快捷键管理:https://blog.csdn.net/h8178/article/details/78328097  (duplicate:为复制上一行)

  10. 分享:大型Web网站架构演变之9大阶段

    前言 我们以Java Web为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变. 该系统具备的功能: 用户模块:用户注册和管理 商品模块:商品展示和管理 交易模块:创建交易和管理 正文 阶 ...