题目显然可以转化为求每一条边对二分图最大独立集的贡献,二分图最大独立集\(=\)点数\(-\)最大匹配数,我们就有了\(50pts\)做法。

正解的做法是在原图上跑\(Tarjan\),最开始我想复杂了,后来才意识到,只要存在这样一个强连通分量,那么断掉分量内的任意一条边都不会破坏其连通性,即不管删掉哪个连边都一定会有新的匹配补充。只要让两个点不在同一个分量里面,而且原来是满流的(匹配可行边),那么它就是一个可用边(匹配必须边)。

#include <bits/stdc++.h>
using namespace std; const int N = 400010;
const int M = 800010;
const int INF = 0x3f3f3f3f; struct Graph {
int cnt, head[N]; struct edge {int nxt, to, f;}e[M]; Graph () {
cnt = -1;
memset (head, -1, sizeof (head));
} void add_edge (int u, int v, int f) {
e[++cnt] = (edge) {head[u], v, f}; head[u] = cnt;
} void add_len (int u, int v, int f) {
add_edge (u, v, f);
add_edge (v, u, 0);
} queue <int> q;
int cur[N], deep[N]; bool bfs (int s, int t) {
memcpy (cur, head, sizeof (head));
memset (deep, 0x3f, sizeof (deep));
deep[s] = 0; q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == INF && e[i].f) {
deep[v] = deep[u] + 1;
q.push (v);
}
}
}
return deep[t] != INF;
} int dfs (int u, int t, int lim) {
if (u == t || !lim) {
return lim;
}
int tmp = 0, flow = 0;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == deep[u] + 1) {
tmp = dfs (v, t, min (lim, e[i].f));
lim -= tmp;
flow += tmp;
e[i ^ 0].f -= tmp;
e[i ^ 1].f += tmp;
if (!lim) break;
}
}
return flow;
} int Dinic (int s, int t) {
int max_flow = 0;
while (bfs (s, t)) {
max_flow += dfs (s, t, INF);
}
return max_flow;
}
}G; int n, m, _ans, id[N]; struct Query {
int u, v; bool operator < (Query rhs) const {
return u == rhs.u ? v < rhs.v : u < rhs.u;
} bool operator == (Query rhs) const {
return u == rhs.u && v == rhs.v;
}
}q[N], ans[N]; int A (int x) {return n * 0 + x;}
int B (int x) {return n * 1 + x;} int read () {
int s = 0, w = 1, ch = getchar ();
while ('9' < ch || ch < '0') {
if (ch == '-') w = -1;
ch = getchar ();
}
while ('0' <= ch && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * w;
} stack <int> sta;
int dfn[N], low[N], col[N], vis[N]; void Tarjan (int u) {
sta.push (u);
vis[u] = true;
dfn[u] = low[u] = ++dfn[0];
for (int i = G.head[u]; ~i; i = G.e[i].nxt) {
int v = G.e[i].to;
if (!G.e[i].f) continue;
if (!dfn[v]) {
Tarjan (v);
low[u] = min (low[u], low[v]);
} else if (vis[v]) {
low[u] = min (low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
int tmp; ++col[0];
do {
tmp = sta.top ();
vis[tmp] = false;
col[tmp] = col[0];
sta.pop ();
}while (tmp != u);
}
} int main () {
cin >> n >> m;
int s = n * 2 + 1;
int t = n * 2 + 2;
for (int i = 1; i <= m; ++i) {
q[i].u = read ();
q[i].v = read ();
if (q[i].u > q[i].v) {
swap (q[i].u, q[i].v);
}
}
sort (q + 1, q + 1 + m);
for (int i = 1; i <= m; ++i) {
id[i] = G.cnt + 1;
G.add_len (A (q[i].u), B (q[i].v), 1);
G.add_len (A (q[i].v), B (q[i].u), 1);
}
for (int i = 1; i <= n; ++i) {
G.add_len (s, A (i), 1);
G.add_len (B (i), t, 1);
}
G.Dinic (s, t);
for (int i = 1; i <= t; ++i) {
if (!dfn[i]) {
Tarjan (i);
}
}
for (int i = 1; i <= m; ++i) {
if (col[A (q[i].u)] != col[B (q[i].v)] && !G.e[id[i]].f) {
ans[++_ans] = q[i];
}
}
cout << _ans << endl;
for (int i = 1; i <= _ans; ++i) {
printf ("%d %d\n", ans[i].u, ans[i].v);
}
}

Luogu P3731 [HAOI2017]新型城市化的更多相关文章

  1. 洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】

    我到底怎么建的图为啥要开这么大的数组啊?! 神题神题,本来以为图论出不出什么花来了. 首先要理解'团'的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘. 所以关于团一般都是NP问题,只有二分 ...

  2. P3731 [HAOI2017]新型城市化(tarjan+网络流)

    洛谷 题意: 给出两个最大团的补图,现在要求增加一条边,使得最大最大团个数增加至少\(1\). 思路: 我们求出团的补图,问题可以转换为:对于一个二分图,选择删掉一条边,能够增大其最大独立集的点集数. ...

  3. 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)

    [Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...

  4. 求去掉一条边使最小割变小 HAOI2017 新型城市化

    先求最小割,然后对残量网络跑Tarjan.对于所有满流的边,若其两端点不在同一个SCC中,则这条边是满足条件的. 证明见 来源:HAOI2017 新型城市化

  5. HAOI2017 新型城市化 二分图的最大独立集+最大流+强连通缩点

    题目链接(洛谷):https://www.luogu.org/problemnew/show/P3731 题意概述:给出一张二分图,询问删掉哪些边之后可以使这张二分图的最大独立集变大.N<=10 ...

  6. LOJ2276 [HAOI2017] 新型城市化 【二分图匹配】【tarjan】

    题目分析: 这题出的好! 首先问题肯定是二分图的最大独立集,如果删去某条匹配边之后独立集是否会变大. 跑出最大流之后流满的边就是匹配边. 如果一个匹配边的两个端点在一个强连通分量里,那这条边删掉之后我 ...

  7. [HAOI2017] 新型城市化

    给出的图中恰包含2个团,则图的补图为一个二分图,其最大独立集为原图的最大团. 我们知道,二分图的最大独立集=V-最小顶点覆盖,最小顶点覆盖=最大匹配. 问题转化为:计算删去后最大匹配减小的边集. 所以 ...

  8. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  9. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

随机推荐

  1. selenium-启动浏览器(二)

    selenium下启动浏览器,有两种方法 以 chromedrvier.exe 为例 1. chromedrvier.exe 与 python 启动程序 python.exe 在同一个目录下则可直接使 ...

  2. 关于swagger——WebApi一个controller中出现多个Get是出现错误的处理

    如 /// <summary> /// 测试处理 /// </summary> public class TestController : ApiController { // ...

  3. 20181218-PostgreSQL数据库Extension管理

    20181218-PostgreSQL数据库Extension管理 注意:在集群的一个数据库中安装扩展,在集群的另一个数据库要使用的话,仍需安装 1. 查看当前已安装Extension postgre ...

  4. 利用ZYNQ SOC快速打开算法验证通路(5)——system generator算法IP导入IP integrator

    一.前言 利用FPGA设计算法一直以来都是热点,同样也是难点.将复杂的数学公式 模型通过硬件系统来搭建,在低延时 高并行性等优势背后极大提高了设计难度和开发周期.Xilinx公司的sysGen(sys ...

  5. 【模块04-大数据技术入门】02节-HDFS核心知识

    分布式存储 (1) 5PB甚至更大的数据集怎么存储 ? 所有数据分块,每个数据块冗余存储在多台机器上(冗余可提高数据块高可用性).另外一台机器上启动一个管理所有节点.以及存储在各节点上面数据块的服务. ...

  6. .NET CORE学习笔记系列(2)——依赖注入[8]: .NET Core DI框架[服务消费]

    原文:https://www.cnblogs.com/artech/p/net-core-di-08.html 包含服务注册信息的IServiceCollection对象最终被用来创建作为DI容器的I ...

  7. CentOS 7 增加磁盘分区挂载(lvm)

    1.查看主机现有磁盘情况 # fdisk -l 现在主机中存在一块8G的磁盘sdb,尚未分区挂载,所以需将磁盘进行分区挂载. 2.对磁盘进行分区 # fdisk /dev/sdb   (选择要操作分区 ...

  8. SQL NOW() 函数

    NOW() 函数 NOW 函数返回当前的日期和时间. 提示:如果您在使用 Sql Server 数据库,请使用 getdate() 函数来获得当前的日期时间. SQL NOW() 语法 SELECT ...

  9. Cocos2d-x游戏开发之lua编辑器 Sublime 搭建,集成cocos2dLuaApi和自有类

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/wisdom605768292/article/details/34085969 Sublime Te ...

  10. BugPhobia开发篇章:Beta阶段第X次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第十次Scrum Meeting 敏捷开发起始时间 2015/12/29 00:00 A.M. 敏捷开发终止时间 2016/01/01 23 ...