attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=FLAGS.rnn_hidden_size, memory = encoder_outputs, memory_sequence_length = encoder_sequence_length)

这一步创造一个attention_mechanism。通过__call__(self, query, previous_alignments)来调用,输入query也就是decode hidden,输入previous_alignments是encode hidden,输出是一个attention概率矩阵

helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper(inputs, tf.to_int32(sequence_length), emb, tf.constant(FLAGS.scheduled_sampling_probability))

创建一个helper,用来处理每个时刻的输入和输出

my_decoder = tf.contrib.seq2seq.BasicDecoder(cell = cell, helper = helper, initial_state = state)

调用的核心部分。通过def step(self, time, inputs, state, name=None)来控制每一个进行decode

首先把inputs和attention进行concat作为输入。(为什么这样做,参考LSTM的实现 W1U+W2V,其实是把U,V concat在乘以一个W),那么这里inputs就是U,attention就是V(其实tf.concat(query,attention矩阵 * memory)在做个outpreject)。

outputs, state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(my_decoder, scope='seq_decode')

最后通过dynamic_decode来控制整个flow

写到前面:

先看:

class BasicRNNCell(RNNCell):

def call(self, inputs, state):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""
if self._linear is None:
self._linear = _Linear([inputs, state], self._num_units, True)

这个是核心,也就是W * input + U * state + B的实现,tf是用_Linear来实现的(_Linear的实现就是把input和state进行concat,然后乘以一个W)。由于rnn只有hidden,所以这里的state就是hidden

再看

class BasicLSTMCell(RNNCell):

if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)

if self._linear is None:
self._linear = _Linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(
value=self._linear([inputs, h]), num_or_size_splits=4, axis=1)

new_c = (
c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)

if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state

就非常明显了,由于lstm的state是由两部分构成的,一个是hidden,一个是state,第一步先split。之后用inputs和h进行linear,由于我们要输出4个结果,记得输出维度一定要是4*_num_units。然后根据公式再进行后面的操作,最后返回新的hidden和state,也很直观。

之后再看,加入attention之后怎么弄:

我们这里的attention为encode hidden,那么根据公式是attention和decode hidden进行concat作为一个大的hidden,之后和inputs一起进入网络。

但是,tf实现的时候是这样子的,首先把attention和inputs进行concat,之后把连接的结果作为inputs和decode hidden一起送入网络。为什么能这么做呢,是因为在网络内部其实也是concat之后再linear,参考上面的BasicLSTMCell实现,所有关键就是把(inputs,attention,decode hidden)concat一起就行了,不管顺序是啥。说道这里你终于明白了AttentionWrapper到底是干啥的了。那么attention怎么计算呢,有个_compute_attention函数。我感觉就是非常直接了,attention_mechanism是你需要的attention映射矩阵的方式,

def _compute_attention(attention_mechanism, cell_output, previous_alignments,
attention_layer):
"""Computes the attention and alignments for a given attention_mechanism."""
alignments = attention_mechanism(
cell_output, previous_alignments=previous_alignments)

# Reshape from [batch_size, memory_time] to [batch_size, 1, memory_time]
expanded_alignments = array_ops.expand_dims(alignments, 1)
# Context is the inner product of alignments and values along the
# memory time dimension.
# alignments shape is
# [batch_size, 1, memory_time]
# attention_mechanism.values shape is
# [batch_size, memory_time, memory_size]
# the batched matmul is over memory_time, so the output shape is
# [batch_size, 1, memory_size].
# we then squeeze out the singleton dim.
context = math_ops.matmul(expanded_alignments, attention_mechanism.values)
context = array_ops.squeeze(context, [1])

if attention_layer is not None:
attention = attention_layer(array_ops.concat([cell_output, context], 1))
else:
attention = context

return attention, alignments

新版seqseq接口说明的更多相关文章

  1. 虹软最新版 python 接口 完整版

    虹软最新版 python 接口 完整版 当前开源的人脸检测模型,识别很多,很多小伙伴也踩过不少坑.相信不少使用过dlib和facenet人脸识别的小伙伴都有这样的疑惑,为什么论文里高达99.8以上的准 ...

  2. javascript使用H5新版媒体接口navigator.mediaDevices.getUserMedia,做扫描二维码,并识别内容

    本文代码测试要求,最新的chrome浏览器(手机APP),并且要允许chrome拍照录像权限,必须要HTTPS协议,http不支持. 原理:调用摄像头,将摄像头返回的媒体流渲染到视频标签中,再通过ca ...

  3. 夺命雷公狗---微信开发55----微信js-sdk接口开发(2)接口功能介绍之签名算法

    我们JS-SDK里面其实有不少的接口 startRecord---录音 stopRecord---停止录音 playVoice---播放 pauseVoice---暂停播放 uploadImage-- ...

  4. 使用Github Pages建独立博客

    http://beiyuu.com/github-pages/ Github很好的将代码和社区联系在了一起,于是发生了很多有趣的事情,世界也因为他美好了一点点.Github作为现在最流行的代码仓库,已 ...

  5. 微信:JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引 ...

  6. 微信公众平台开发 微信JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引 ...

  7. 【周年版】Cnblogs for Android

    前言 扒衣见君节刚过去但是炎热夏天还在继续: 自14年8月推出博客园Android客户端以来,断断续续发了十几个后续版本,期间出现过各种问题,由于接口等诸多因素,每个模块的功能都可能随着时间和博客园主 ...

  8. 微信公众平台JSSDK开发

    根据微信开发文档步骤如下: 1.先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”.JS接口安全域名设置 mi.com(前面不用带www/http,域名必须备案过) 2.引入 ...

  9. 微信JS-SDK

    <div class="lbox_close wxapi_form"> <h3 id="menu-basic">基础接口</h3& ...

随机推荐

  1. Centos7 下yum安装mysql

  2. TTL集成门电路

    一.TTL集成门电路的结构1.总体结构 所谓TTL就是transistor transistor logic,就是说是由晶体管和晶体管之间构成电路. 2.    TTL集成门电路典型输入级形式 1)二 ...

  3. Java EE开发技术课程第五周(Applet程序组件与AJAX技术)

    1.Applet程序组件 1.1.定义: Applet是采用Java编程语言编写的小应用程序,该程序可以包含在HTML(标准通用标记语言的一个应用)页中,与在页中包含图像的方式大致相同.含有Apple ...

  4. JAVA课堂测试之一位数组可视化

    代码: package test;//求最大子数组 import java.util.Scanner; import javax.swing.JOptionPane; public class shu ...

  5. java面向对象总结(一)

    1. 对象的概念及面向对象的三个基本特征 面向对象的三大核心特性 面向对象开发模式更有利于人们开拓思维,在具体的开发过程中便于程序的划分,方便程序员分工合作,提高开发效率.面向对象程序设计有以下优点. ...

  6. POI兴趣点搜索 - 地理信息系统(6)

    (2017-08-13 银河统计) POI(Point of Interest),中文可以翻译为"兴趣点",兴趣点(POI)是地理信息系统中的一个术语,泛指一切可以抽象为点的地理对 ...

  7. PLS-00357: Table,View Or Sequence reference 'SEQ_TRADE_RECODE.NEXTVAL' not allowed in this context

    oracle数据库: 为了使ID自增,建了序列后,创建触发器: create or replace TRIGGER TRIG_INSERT_TRADE_RECODE BEFORE INSERT ON ...

  8. 湘潭邀请赛+蓝桥国赛总结暨ACM退役总结

    湘潭邀请赛已经过去三个星期,蓝桥也在上个星期结束,今天也是时候写一下总结了,这应该也是我的退役总结了~ --------------------------------湘潭邀请赛----------- ...

  9. 2019/4/16 wen 反射与JVM

  10. Mapped Statements collection already contains value for ***.***的问题

    情景,在我们配置项目或者开发的过程中,可能由于项目工程量大或误操作等原因,造成Map映射文件的ID重复,造成项目启动报以下错误, org.springframework.beans.factory.B ...