spark优化参数调节和故障参数调节
1:“物尽其用”,但给spark分配多个机器后,先需配置spark-submit shell如下: /usr/local/spark/bin/spark-submit \
--class com.spark.test.Top3UV \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/jars/spTest-1.0-SNAPSHOT-jar-with-dependencies.jar \ executor的cpu核心数为3,并且executor数量为3,那么总cpu核心数就是9,task并行度推荐设置2~3倍的cpu-core才能“物尽其用”,因为难以保证所有task都在同一时间执行完成!
SparkConf conf = new SparkConf()
conf.set("spark.default.parallelism", "500")
2:重复使用的Rdd,需要缓存:StorageLevel.MEMORY_AND_DISK_SER_2() 可选择:
(1)内存缓存(2)内存磁盘缓存(3)带有序列化的缓存(4)带有副本的缓存-》以防数据丢失,形如 _2。
***复用的rdd还可以持久化到hdfs,使用checkpoint机制,如下 javaSparkContext.setCheckpointDir("hdfs://xxx:9000/checkPointPath");//设置checkpoint的存储路径
rdd_date_range.checkpoint();//对rdd_date_range的Rdd进行checkpoint存储(如果rdd使用cache则checkpoint数据从缓存中获取)
3:shuffle操作时优化
(1)开启 consolidateFile,这样map端产生的file数量会和下游stage的task数量一致,不会因为重复创建文件导致性能下降。
(2)"spark.shuffle.file.buffer", "128k",设置之后可减少map端数据输出到文件的次数减少,提升性能。
(3)"spark.reducer.maxSizeInFlight", "96m",下游stage拉取map形成file中的内容,每次拉取的数据量,值过小会导致多次网络通信。
(4)"spark.shuffle.io.maxRetries", "6",如果上游jvm出现stw的话,有可能下游获取file时会出现,无法获取的情况,这个参数代表可以重试的次数,"spark.shuffle.io.retryWait", "10s"而这个参数设定每次重试的间隔时间。
4:使用 fastUtil工具 代替jdk中带有的基础数据类型,减小内存开销;如:ArrayList或者HashMap等。
5:使用kryo序列化工具,这样序列化数据的速度能够提升,而且能够减小内存的开销;***但要注意的是
使用kryo序列化,如果涉及到自定义类型必须要注册,这样才能被kryo序列化***
6:spark1.2.x 以后默认使用sort shuffle manager,但如果没有必要使用排序功能可以在SparkConf中设置即可;
如下:
new SparkConf().set("spark.shuffle.manager","hash"); ***当然spark1.5.x以后又出现了tungsten-sort shuffle manager,要比sort shuffle manager性能更好***
(如果使用sort shuffle manager可以通过new SparkConf().set("spark.shuffle.sort.bypassMergeThreshold","350");如果实际task的数量大于350才开启sort shuffle manager)
7:如果在某处使用了spark sql,那么这个阶段的partition数量是不受控制的spark.default.parallelism设置控制的,如果想要设置需要使用repartition方法来设置实际的partition数量;
如下:
actionDF.javaRDD().repartition(1000);//在使用DataFrame转化成javaRDD的时候,使用repartition来提高实际的数据分块数量,从而提高并行度。
8:如果可用内存比较大的话,那么map操作可以使用mapPartitions来代替;
如:
rdd.mapToPair使用rdd.mapPartitionsToPair来代替,这样会一次性获得rdd中的某个partition,方法变成迭代的方式仅仅执行一次(但是这样非常大的可能导致oom直接挂掉);
rdd.mapPartitionsToPair(new PairFlatMapFunction<Iterator<Row>, Object, Object>() {
@Override
public Iterable<Tuple2<Object, Object>> call(Iterator<Row> rowIterator) throws Exception {
return null;
}
});
return rdd.mapToPair(new PairFunction<Row, String, Row>() {
@Override
public Tuple2<String, Row> call(Row row) throws Exception {
return new Tuple2<String, Row>(row.getString(2), row);
}
});
9:shuffle阶段,在reduce中有时需要调节拉取数据时内存缓冲区(从map端输出的action触发job计算的文件),默认是48MB,如果当数据量特别大的时候很有可能出现OOM的问题,这个问题除了增加硬件条件外,必须通过牺牲性能来换取执行能力了;
调整参数:
将默认48MB下调到10MB,增加数据拉取(增加了网络通信次数)的次数,来避免OOM
new SparkConf().set("spark.reducer.maxSizeInFlight","10");
10:如果在日志中出现了shuffle file not found 错误! 很可能是由于reduce时executor的jvm发生gc导致了reduce阶段无法获得文件,
解决问题可以通过,增加重试次数,并调节重试的周期:
.set("spark.shuffle.io.maxRetries",3);//默认重试次数是3次,可以调成60
.set("spark.shuffle.io.retryWait",5);//默认每隔5s重试一次,可以调成60
11:如果报错 Scala.Math(NULL) 类似于这种异常,那就是说明在算子中出现了null值的直接返回。
12:spark默认情况下cache缓存配置占比为spark.storage.memoryFraction:0.6,我们可以调整的小些如0.3,必要的时候可以使用persist进行内存+磁盘的缓存方式(StorageLevel.MEMORY_AND_DISK())进行缓存;这样能够保证运行spark核心业务的各种算子能够有足够的运行空间,防止由于内存不足并且频繁的GC而造成spark作业执行的卡顿。
spark优化参数调节和故障参数调节的更多相关文章
- (转)linux IO 内核参数调优 之 参数调节和场景分析
1. pdflush刷新脏数据条件 (linux IO 内核参数调优 之 原理和参数介绍)上一章节讲述了IO内核调优介个重要参数参数. 总结可知cached中的脏数据满足如下几个条件中一个或者多个的时 ...
- inux IO 内核参数调优 之 参数调节和场景分析
http://backend.blog.163.com/blog/static/2022941262013112081215609/ http://blog.csdn.net/icycode/arti ...
- 【经验总结】tcp_tw_recycle参数引发的故障
tcp_tw_recycle参数引发的故障 By Eric 故障描述: 2010年9月7日,新上线的手机游戏论坛有部分地区用户反应登陆游戏时出现不能登陆或登陆超时等情况,观察用户同时在线数量开始下降情 ...
- Spark性能测试报告与调优参数
1.代码中尽量避免group by函数,如果需要数据聚合,group形式的为rdd.map(x=>(x.chatAt(0),x)).groupbyKey().mapValues((x=>x ...
- loadrunner 脚本优化-参数化之Parameter List参数同行取值
脚本优化-参数化之Parameter List参数同行取值 by:授客 QQ:1033553122 select next row 记录选择方式 Same line as,这个选项只有当参数多余一个时 ...
- loadrunner 脚本优化-参数化之Parameter List参数取值
脚本优化-参数化之Parameter List参数取值 by:授客 QQ:1033553122 参数取值选项 Select next row Update value on 以上两个选项是改变参数化取 ...
- MySQL性能优化方法一:缓存参数优化
原文链接:http://isky000.com/database/mysql-perfornamce-tuning-cache-parameter 数据库属于 IO 密集型的应用程序,其主要职责就是数 ...
- 小记---------spark优化之更优分配资源
spark优化:在一定范围之内,增加资源与性能的提升是成正比的. 因此, 一个cpu core 执行一个task线程. task数: 若有 cpu core 2个.num-execu ...
- spark优化项
一.Shuffle优化项 1.Shuffle优化配置 - spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的Buffer ...
随机推荐
- [ZJOI2008]树的统计-树链剖分
#include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...
- vue+cordova插件使用,bluetoothSerial.connect()连接失败
这是GitHub地址https://github.com/don/BluetoothSerial
- P4147 玉蟾宫--单调栈
P4147 玉蟾宫 题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子 ...
- js 读取文件
读取文本文件 读取文本文件: <input type="file" id="file1" accept="*" /> </ ...
- matplotlib坐标轴设置-【老鱼学matplotlib】
我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotli ...
- 1.使用RNN做MNIST分类
第一次用LSTM,从简单做起吧~~ 注意事项: batch_first=True 意味着输入的格式为(batch_size,time_step,input_size),False 意味着输入的格式为( ...
- Mapreduce概述和WordCount程序
一.Mapreduce概述 Mapreduce是分布式程序编程框架,也是分布式计算框架,它简化了开发! Mapreduce将用户编写的业务逻辑代码和自带默认组合整合成一个完整的分布式运算程序,并发的运 ...
- nginx 配置laravel框架域名配置
server { listen 80; server_name admin.meiquick.local.com; #charset koi8-r; # access_log /var/log/ngi ...
- 20172328 2018—2019《Java软件结构与数据结构》第二周学习总结
20172328 2018-2019<Java软件结构与数据结构>第二周学习总结 概述 Generalization 本周学习了第三章集合概述--栈和第四章链式结构--栈.主要讨论了集合以 ...
- 2019-2-20Sqlserver数据库中char、varchar、nchar、nvarchar的区别及查询表结构
varchar 和 nvarchar区别: varchar(n)长度为 n 个字节的可变长度且非 Unicode 的字符数据.n 必须是一个介于 1 和 8,000 之间的数值.存储大小为输入数据的字 ...