快速比较 Kafka 与 Message Queue 的区别
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
A super quick comparison between Kafka and Message Queues

This article’s aim is to give you a very quick overview of how Kafka relates to queues, and why you would consider using it instead.
Kafka is a piece of technology originally developed by the folks at Linkedin. In a nutshell, it’s sort of like a message queueing system with a few twists that enable it to support pub/sub, scaling out over many servers, and replaying of messages.
These are all concerns when you want to adopt a reactive programming style over an imperative programming style.
The difference between imperative programming and reactive programming
Imperative programming is the type of programming we all start out with. Something happens, in other words an event occurs, and your code is notified of that event. For example, a user clicked a button and where you handle the event in your code, you decide what that action should mean to your system. You might save records to a DB, call another service, send an email, or a combination of all of these. The important bit here, is that the event is directly coupled to specific actions taking place.
Reactive programming enables you to respond to events that occur, often in the form of streams. Multiple concerns can subscribe to the same event and let the event have it’s effect in it’s domain, regardless of what happens in other domains. In other words, it allows for loosely coupled code that can easily be extended with more functionality. It’s possible that various big down-stream systems coded in different stacks are affected by an event, or even a whole bunch of serverless functions executing somewhere in the cloud.
From queues to Kafka
To understand what Kafka will bring to your architecture, let’s start by talking about message queues. We’ll start here, because we will talk about it’s limitations and then see how Kafka solves them.
A message queue allows a bunch of subscribers to pull a message, or a batch of messages, from the end of the queue. Queues usually allow for some level of transaction when pulling a message off, to ensure that the desired action was executed, before the message gets removed.
Not all queueing systems have the same functionality, but once a message has been processed, it gets removed from the queue. If you think about it, it’s very similar to imperative programming, something happened, and the originating system decided that a certain action should occur in a downstream system.
Even though you can scale out with multiple consumers on the queue, they will all contain the same functionality, and this is done just to handle load and process messages in parallel, in other words, it doesn’t allow you to kick off multiple independent actions based on the same event. All the processors of of the queue messages will execute the same type of logic in the same domain. This means that the messages in the queue are actually commands, which is suited towards imperative programming, and not an event, which is suited towards reactive programming.

With queues, you generally execute the same logic in the same domain for every message on the queue
With Kafka on the other hand, you publish messages/events to topics, and they get persisted. They don’t get removed when consumers receive them. This allows you to replay messages, but more importantly, it allows a multitude of consumers to process logic based on the same messages/events.
You can still scale out to get parallel processing in the same domain, but more importantly, you can add different types of consumers that execute different logic based on the same event. In other words, with Kafka, you can adopt a reactive pub/sub architecture.

Different logic can be executed by different systems based on the same events
This is possible with Kafka due to the fact that messages are retained and the concept of consumer groups. Consumer groups in Kafka identify themselves to Kafka when they ask for messages on a topic. Kafka will record which messages (offset) were delivered to which consumer group, so that it doesn’t serve it up again. Actually, it is a bit more complex than that, because you have a bunch of configuration options available to control this, but we don’t need to explore the options fully just to understand Kafka at a high level.
Summary
There is a bunch more to Kafka, for example how it manages scaling out (partitions), configuration options for reliable messaging, etc. But my hope is that this article was good enough to let you understand why you would consider adopting Kafka over good ‘ol message queues.
快速比较 Kafka 与 Message Queue 的区别的更多相关文章
- 为什么要用Message Queue
摘录自博客:http://dataunion.org/9307.html?utm_source=tuicool&utm_medium=referral 为什么要用Message Queue 解 ...
- Message Queue的使用目的
为什么要用Message Queue 摘录自博客:http://dataunion.org/9307.html?utm_source=tuicool&utm_medium=referral ...
- 【转】快速理解Kafka分布式消息队列框架
from:http://blog.csdn.net/colorant/article/details/12081909 快速理解Kafka分布式消息队列框架 标签: kafkamessage que ...
- 消息队列(Message Queue)基本概念(转)
背景 之前做日志收集模块时,用到flume.另外也有的方案,集成kafaka来提升系统可扩展性,其中涉及到消息队列当时自己并不清楚为什么要使用消息队列.而在我自己提出的原始日志采集方案中不适用消息队列 ...
- Top 10 Uses For A Message Queue
We’ve been working with, building, and evangelising message queues for the last year, and it’s no se ...
- MSMQ(Microsoft Message Queue)
http://www.cnblogs.com/sk-net/archive/2011/11/25/2232341.html 利用 MSMQ(Microsoft Message Queue),应用程序开 ...
- 快速理解Kafka分布式消息队列框架
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ ==是什么 == 简单的说,K ...
- [转载] 快速理解Kafka分布式消息队列框架
转载自http://blog.csdn.net/xiaolang85/article/details/18048631 ==是什么 == 简单的说,Kafka是由Linkedin开发的一个分布式的消息 ...
- 消息队列(Message Queue)简介及其使用
消息队列(Message Queue)简介及其使用 摘要:利用 MSMQ(Microsoft Message Queue),应用程序开发人员可以通过发送和接收消息方便地与应用程序进行快速可靠的通信.消 ...
随机推荐
- Python初次实现MapReduce——WordCount
前言 Hadoop 本身是用 Java 开发的,所以之前的MapReduce代码小练都是由Java代码编写,但是通过Hadoop Streaming,我们可以使用任意语言来编写程序,让Hadoop 运 ...
- 【python 3】 字符串方法操作汇总
基础数据类型:str 1.1 字符串大小写转换 所有字母大写 : string.upper() 所有字母小写 : string. lower() 第一个单词的第一个字母大写,其他字母小写 : st ...
- C++_day9am
dynamic_cast static_cast reinterpret_cast #include <iostream> using namespace std; class A{ pu ...
- Qt551.OpenGL.ZC简单例子
1.主要 模仿代码:OpenGL的教程 第3课 "tutorial03_matrices"的代码(E:\OpenGL_something\ogl-master) 2.参考代码:Qt ...
- Caused by : java.io.IOException: Cleartext HTTP traffic to 《“url”》 not permitted
一.问题原因: 根本原因是从Android9.0开始,出于完全因素考虑,默认不再支持http网络请求,需要使用 https. 二.解决方案: 解决的基本思路是:对指定的网址进行过滤,强制允许指定网址继 ...
- DAY 25多态、反射、异常处理
一.面向对象与面向过程分析 1.print(len('123')) # 面向过程 #清晰知道操作的功能,但不能明确操作的具体对象,需要传入参数. 2.print('123'.__len__()) # ...
- MySQL 存储过程 if语句
MySQL 存储过程 if语句 MySQL IF语句允许您根据表达式的某个条件或值结果来执行一组SQL语句. 要在MySQL中形成一个表达式,可以结合文字,变量,运算符,甚至函数来组合.表达式可以返 ...
- 4 - BFS & Topological Algorithm
615. Course Schedule https://www.lintcode.com/problem/course-schedule/description?_from=ladder&& ...
- regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码
P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...
- C# Timer 定时任务
C#中,Timer是一个定时器,它可以按照指定的时间间隔或者指定的时间执行一个事件. 指定时间间隔是指按特定的时间间隔,如每1分钟.每10分钟.每1个小时等执行指定事件: 指定时间是指每小时的第30分 ...