快速比较 Kafka 与 Message Queue 的区别
https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
A super quick comparison between Kafka and Message Queues

This article’s aim is to give you a very quick overview of how Kafka relates to queues, and why you would consider using it instead.
Kafka is a piece of technology originally developed by the folks at Linkedin. In a nutshell, it’s sort of like a message queueing system with a few twists that enable it to support pub/sub, scaling out over many servers, and replaying of messages.
These are all concerns when you want to adopt a reactive programming style over an imperative programming style.
The difference between imperative programming and reactive programming
Imperative programming is the type of programming we all start out with. Something happens, in other words an event occurs, and your code is notified of that event. For example, a user clicked a button and where you handle the event in your code, you decide what that action should mean to your system. You might save records to a DB, call another service, send an email, or a combination of all of these. The important bit here, is that the event is directly coupled to specific actions taking place.
Reactive programming enables you to respond to events that occur, often in the form of streams. Multiple concerns can subscribe to the same event and let the event have it’s effect in it’s domain, regardless of what happens in other domains. In other words, it allows for loosely coupled code that can easily be extended with more functionality. It’s possible that various big down-stream systems coded in different stacks are affected by an event, or even a whole bunch of serverless functions executing somewhere in the cloud.
From queues to Kafka
To understand what Kafka will bring to your architecture, let’s start by talking about message queues. We’ll start here, because we will talk about it’s limitations and then see how Kafka solves them.
A message queue allows a bunch of subscribers to pull a message, or a batch of messages, from the end of the queue. Queues usually allow for some level of transaction when pulling a message off, to ensure that the desired action was executed, before the message gets removed.
Not all queueing systems have the same functionality, but once a message has been processed, it gets removed from the queue. If you think about it, it’s very similar to imperative programming, something happened, and the originating system decided that a certain action should occur in a downstream system.
Even though you can scale out with multiple consumers on the queue, they will all contain the same functionality, and this is done just to handle load and process messages in parallel, in other words, it doesn’t allow you to kick off multiple independent actions based on the same event. All the processors of of the queue messages will execute the same type of logic in the same domain. This means that the messages in the queue are actually commands, which is suited towards imperative programming, and not an event, which is suited towards reactive programming.

With queues, you generally execute the same logic in the same domain for every message on the queue
With Kafka on the other hand, you publish messages/events to topics, and they get persisted. They don’t get removed when consumers receive them. This allows you to replay messages, but more importantly, it allows a multitude of consumers to process logic based on the same messages/events.
You can still scale out to get parallel processing in the same domain, but more importantly, you can add different types of consumers that execute different logic based on the same event. In other words, with Kafka, you can adopt a reactive pub/sub architecture.

Different logic can be executed by different systems based on the same events
This is possible with Kafka due to the fact that messages are retained and the concept of consumer groups. Consumer groups in Kafka identify themselves to Kafka when they ask for messages on a topic. Kafka will record which messages (offset) were delivered to which consumer group, so that it doesn’t serve it up again. Actually, it is a bit more complex than that, because you have a bunch of configuration options available to control this, but we don’t need to explore the options fully just to understand Kafka at a high level.
Summary
There is a bunch more to Kafka, for example how it manages scaling out (partitions), configuration options for reliable messaging, etc. But my hope is that this article was good enough to let you understand why you would consider adopting Kafka over good ‘ol message queues.
快速比较 Kafka 与 Message Queue 的区别的更多相关文章
- 为什么要用Message Queue
摘录自博客:http://dataunion.org/9307.html?utm_source=tuicool&utm_medium=referral 为什么要用Message Queue 解 ...
- Message Queue的使用目的
为什么要用Message Queue 摘录自博客:http://dataunion.org/9307.html?utm_source=tuicool&utm_medium=referral ...
- 【转】快速理解Kafka分布式消息队列框架
from:http://blog.csdn.net/colorant/article/details/12081909 快速理解Kafka分布式消息队列框架 标签: kafkamessage que ...
- 消息队列(Message Queue)基本概念(转)
背景 之前做日志收集模块时,用到flume.另外也有的方案,集成kafaka来提升系统可扩展性,其中涉及到消息队列当时自己并不清楚为什么要使用消息队列.而在我自己提出的原始日志采集方案中不适用消息队列 ...
- Top 10 Uses For A Message Queue
We’ve been working with, building, and evangelising message queues for the last year, and it’s no se ...
- MSMQ(Microsoft Message Queue)
http://www.cnblogs.com/sk-net/archive/2011/11/25/2232341.html 利用 MSMQ(Microsoft Message Queue),应用程序开 ...
- 快速理解Kafka分布式消息队列框架
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ ==是什么 == 简单的说,K ...
- [转载] 快速理解Kafka分布式消息队列框架
转载自http://blog.csdn.net/xiaolang85/article/details/18048631 ==是什么 == 简单的说,Kafka是由Linkedin开发的一个分布式的消息 ...
- 消息队列(Message Queue)简介及其使用
消息队列(Message Queue)简介及其使用 摘要:利用 MSMQ(Microsoft Message Queue),应用程序开发人员可以通过发送和接收消息方便地与应用程序进行快速可靠的通信.消 ...
随机推荐
- 洛谷 P3376 【【模板】网络最大流】
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui. ...
- Codeforces 803C. Maximal GCD
题目链接:http://codeforces.com/contest/803/problem/C 中了若干trick之后才过... k个数的严格递增序列最小权值和就是${n*(n+1)/2}$,枚举这 ...
- 你有可能不知道的css浮动问题
最近在开发过程中,有的时候会经常遇见明明知道需要这样做,但是为什么要这样做的原因我们却总是不明所以然. 先来解释下什么叫做清除浮动吧: 在非IE浏览器(如Firefox)下,当容器的高度为auto,且 ...
- 20175317 《Java程序设计》第六周学习总结
20175317 <Java程序设计>第六周学习总结 教材学习内容总结 第六周我学习了教材第七章与第十章的内容,了解了内部类.异常类与输入输出流的知识,学到了以下内容: 什么是内部类 如何 ...
- Springboot 中配置文件的优先级和加载顺序
1. 若application.yml 和bootStrap.yml 在同一目录下,则bootStrap.yml 的加载顺序要高于application.yml,即bootStrap.yml 会优先 ...
- Windows下安装和卸载MangoDB服务 --MangoDB
1.创建存放的数据文件夹和日志文件 2.安装MangoDB服务:(如数据文件夹路径是:d:/MongoDB/db/,日志文件路径:d:/MongoDB/log.txt) mongod --dbpath ...
- 从虚拟dom了解vue渲染函数
vue渲染函数就是render函数,他会返回一个VNode,VNode是一个js对象,是dom的映射 vue在介绍渲染函数那个章节看的不是很懂,所以想要彻底的理解渲染函数,首先需要了解vue的虚拟do ...
- Matlab内嵌图像
在数值分析中我们通常需要将数据可视化成图像的形式作为我们分析结果的有效性的途径,常用的画图函数有:$\tt plot$,$\tt surf$,$\tt mesh$...当然,我们有时需要多窗口显示图像 ...
- text——文本属性大全
一.文字颜色(color:red;) <style> body {color:red} h1 {color:greenyellow} p.color {color:blue} </s ...
- 利用itext将html页面转成pdf(不模糊)
1.maven项目进入依赖 <dependency> <groupId>org.xhtmlrenderer</groupId> <artifactId> ...