[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}. \eex$$
证明: 注意到 $$\beex \bea {\bf C}={\bf F}^T{\bf F}&\ra c_{mn}=\sum_t f_{tm}f_{tn}\\ &\ra \cfrac{\p c_{mn}}{\p f_{kl}}=\delta_{lm}f_{kn}+\delta_{ln}f_{km}, \eea \eeex$$ 我们有 $$\beex \bea &\quad\cfrac{\p^2\hat W}{\p f_{kl}\p f_{ij}} =\cfrac{\p^2\hat W}{\p f_{ij}\p f_{kl}} \ra \cfrac{\p p_{ij}}{\p f_{kl}}=\cfrac{\p p_{kl}}{\p f_{ij}}\\ &\ra \sum_s\cfrac{\p }{\p f_{kl}}(f_{is}\bar p_{sj}) =\sum_s \cfrac{\p}{\p f_{ij}}(f_{ks}\bar p_{sl})\\ &\ra \delta_{ik}\bar p_{lj}+\sum_s f_{is}\cfrac{\p \bar p_{sj}}{\p f_{kl}} =\delta_{ik}\bar p_{jl}+\sum_s f_{ks}\cfrac{\p \bar p_{sl}}{\p f_{ij}}\\ &\ra \delta_{ik}\bar p_{lj} +\sum_{m,n,s}f_{is}\cfrac{\p \bar p_{sj}}{\p c_{mn}}\cfrac{\p c_{mn}}{\p f_{kl}}=\cdots\\ &\ra \delta_{ik} \bar p_{lj}+\sum_{m,n,s}f_{is}a_{sjmn}(\delta_{lm}f_{kn}+\delta_{ln}f_{km})=\cdots\\ &\ra \delta_{ik}\bar p_{lj} +\sum_{n,s}f_{is}a_{sjln}f_{kn} +\sum_{m,s}f_{is}a_{sjml}f_{km}=\cdots\\ &\ra \delta_{ik}\bar p_{lj}+2\sum_{n,s} f_{is}a_{sjln}f_{kn}= \delta_{ki}\bar p_{jl}+2\sum_{n,s}f_{ks}a_{sljn}f_{in}\quad(a_{ijkl}=a_{ijlk})\\ &\ra \sum_{n,s} f_{is}a_{sjln}f_{kn}=\sum_{n,s}f_{ks}a_{sljn}f_{in} =\sum_{s,n}f_{in}a_{sljn}f_{ks} =\sum_{n,s}f_{is}a_{nljs}f_{kn}\\ &\ra \sum_{i,k}(f^{-1})_{mi}\sez{\sum_{n,s} f_{is}a_{sjln}f_{kn}} (f^{-T})_{kt}=\sum_{i,k}(f^{-1})_{mi}\sez{\sum_{n,s}f_{is}{a_{nljs}f_{kn}}} (f^{-T})_{kt}\\ &\ra a_{mjlt}=a_{tljm}\\ &\ra a_{mjlt}=a_{tljm}=a_{ltmj}. \eea \eeex$$
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性的更多相关文章
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第1章习题5 偶极子的电场强度
试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...
- [物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...
随机推荐
- 初学Django项目可能会遇到的问题
1. 出现莫名其妙的 app01 我项目中的app名字并不是app01,可是运行python manage.py makemigrations的时候总是提示app01不是已安装的app Applyin ...
- .NET CORE学习笔记系列(2)——依赖注入[5]: 创建一个简易版的DI框架[下篇]
为了让读者朋友们能够对.NET Core DI框架的实现原理具有一个深刻而认识,我们采用与之类似的设计构架了一个名为Cat的DI框架.在上篇中我们介绍了Cat的基本编程模式,接下来我们就来聊聊Cat的 ...
- Python爬虫【实战篇】百度翻译
先看代码 import requests headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS ...
- webpack开发环境和生产环境切换原理
在package.json中有如下设置: "scripts": { "dev": "node build/dev-server.js" ...
- Java中的CAS原理
前言:在对AQS框架进行分析的过程中发现了很多CAS操作,因此有必要对CAS进行一个梳理,也便更清楚的了解其原理. 1.CAS是什么 CAS,是compare and swap的缩写,中文含义:比较交 ...
- YCD 软件更新方法
备份Messenger的数据库和Player的Chainmail数据 Upgrade process in Cnario is quite simple, uninstall old version ...
- 第三章· Redis消息队列
一.生产消费模型 二.Redis发布消息的两种模式
- 其它综合-VMware虚拟机安装Ubuntu 19.04 版本
Ubuntu 19.04 版本安装过程 1. 环境: 使用的虚拟机软件是VMware,版本为 12 .(网上一搜一大推,在此不再演示.) 使用的 ISO镜像为Ubuntu 19.04.(自己也可以在网 ...
- 访问docker仓库
仓库(Repositiry)是集中存放镜像的地方,分为公共仓库和私有仓库.一个容易与之混淆的概念是注册服务器(Registry).实际上注册服务器是存放仓库的具体服务器,一个注册服务器上可以有多个仓库 ...
- Scrapy 框架,爬虫文件相关
Spiders 介绍 由一系列定义了一个网址或一组网址类如何被爬取的类组成 具体包括如何执行爬取任务并且如何从页面中提取结构化的数据. 简单来说就是帮助你爬取数据的地方 内部行为 #1.生成初始的Re ...