matplotlib图表组成元素
一、函数
1、plot() —— 展示变量的趋势与变化
用法:
plt.plot(x,y,ls="-",lw=2,label="plot figure")
参数说明:
x:x轴上的数值
y:y轴上的数值
ls:折线图的线条风格
lw:折线图的线条宽度
label:标记图形内容的标签文本
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.cos(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-",lw=2,label="plot figure") #生成图像
plt.legend() #生成文本标签
plt.show() #显示图像
生成的图像:
2、散点图scatter() —— 寻找变量间的关系
plt.scatter(x,y,c="b",label="scatter figure")
参数说明:
x:x轴上的数值
y:y轴上的数值
c:散点图中标记的颜色
label:标记图形内容的标签文本
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据
plt.scatter(x,y,label="scatter figure")
plt.legend()
plt.show()
生成图像:
3、xlim() —— 设置想轴的数值显示范围
plt.xlim(xmin,xmax)
参数说明:
xmin:x轴上的最小值
xmax:x轴上的最大值
注:ylim()与xlim()的用法相同
代码示例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据
plt.scatter(x,y,label="scatter figure")
plt.legend()
plt.xlim(0.05,10)
plt.ylim(0,1)
plt.show()
生成的图像:
4、xlabel() —— 设置x轴的标签文本
plt.xlabel(string)
参数说明:
string:标签文本内容
注:xlabel()与ylabel()用法相同
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据
plt.scatter(x,y,label="scatter figure")
plt.legend()
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()
输出图像:
5、grid() —— 绘制刻度线的网格线
plt.grid(linestyle=":",color="r")
参数说明:
linestyle:网格线的线条风格
color:网格线的线条颜色
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.grid(linestyle=":",color="r")
plt.show()
输出图像:
6、函数axhline() —— 绘制平行于x轴的水平参考线
plt.axhline(y=0.0,c="r",ls="--",lw=2)
参数说明:
y:水平参考线的出发点
c:参考线的线条颜色
ls:参考线的线条风格
lw:参考线的线条宽度
代码示例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.axhline(y=0.0,c="r",ls="--",lw=2)
plt.axvline(x=4.0,c="r",ls="--",lw=2)
plt.show()
输出图像:
7、函数axvspqn()绘制垂直于x轴的参考区域
plt.axvspan(xmin=1.0,xmax=2.0,facecolor="y",alpha=0.3)
参数说明:
xmin:参考区域的起始位置
xmax:参考区域的终止位置
facecolor:参考区域的填充颜色
alpha:参考区域的填充颜色的透明度
注:上面的功能同样可用在axhspan()
代码示例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.axvspan(xmin=4.0,xmax=6.0,facecolor="y",alpha=0.3)
plt.axhspan(ymin=0.0,ymax=0.5,facecolor="y",alpha=0.3)
plt.show()
输出图像:
8、函数annotate() —— 添加图形内容细节的指向型注释文本
plt.annotate(string,xy=(np.pi/2,1.0),xytext=((np.pi/2)+0.15,1.5),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
参数说明:
string:图形内容注释文本
xy:被注释图形内容的位置坐标
xytext:注释文本的位置坐标
weight:注释文本的字体粗细风格
color:注释文本的字体颜色
arrowprops:指示被注释内容的箭头的属性字典
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.annotate("maximum",xy=(np.pi/2,1.0),xytext=((np.pi/2)+1.0,0.8),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
plt.show()
输出图像:
9、函数text() —— 添加图形内容细节的无指向型注释文本
plt.text(x,y,string,weight="bold",color="b")
参数说明:
x:注释文本内容所在的位置的横坐标
y:注释文本内容所在的位置的纵坐标
string:注释文本内容
weight:注释文本内容的粗细的风格
color:注释文本内容的字体颜色
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.text(3.10,0.09,"y = sin(x)",weight="bold",color="b")
plt.show()
图像输出:
10、函数title() —— 添加图形内容的标题
plt.title(string)
代码实例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.title("y = sin(x)")
plt.show()
图像输出:
11、函数legend() —— 标识不同图形的文本标签图例
plt.legend(loc="lower left")
代码实现:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend(loc="lower left")
plt.show()
输出图像:
组合应用,代码示例:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.5,3.5,100)
y = np.sin(x)
y1 = np.random.rand(100) #定义生成图像所需要的数据
#生成散点图
plt.scatter(x,y1,c="0.25",label = "scatter figure")
#生成函数图像
plt.plot(x,y,ls="--",lw=2,c="c",label="plot figure")
#设置图像上边框和右边框的颜色为无
for spine in plt.gca().spines.keys():
if spine == "top" or spine == "right":
plt.gca().spines[spine].set_color("none")
#调整刻度位置
plt.gca().xaxis.set_ticks_position("bottom")
plt.gca().yaxis.set_ticks_position("left")
#设置坐标范围
plt.xlim(0.0,4.0)
plt.ylim(-3.0,3.0)
#设置坐标轴名称
plt.xlabel("x-axis")
plt.ylabel("y-axis")
#显示网格图
plt.grid(True,ls=":",color="r")
#绘制平行于x轴的水平参考线
plt.axhline(y=0.0,c="r",ls="--",lw=2)
#绘制垂直于x轴的参考区域
plt.axvspan(xmin=1.0,xmax=2.0,facecolor="y",alpha=0.3)
#添加指向型注释文本
plt.annotate("maximum",xy=(np.pi/2,1.0),xytext=((np.pi/2)+0.15,1.5),weight="bold",color="r",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="r"))
plt.annotate("spines",xy=(0.75,-3),xytext=(0.35,-2.25),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
plt.annotate("",xy=(0,-2.78),xytext=(0.4,-2.32),
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
plt.annotate("",xy=(3.5,-2.98),xytext=(3.0,-2.80),weight="bold",color="r",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
#设置文本注释框
plt.text(2.5,-2.50,"'|' is tickline",weight="bold",color="b")
plt.text(2.5,-2.70,"3.5 is tickline1",weight="bold",color="b")
#设置图像标题
plt.title("Structure of Matplotlib")
#显示图例
plt.legend(loc="upper right")
#显示图像
plt.show()
图像输出:
matplotlib图表组成元素的更多相关文章
- matplotlib学习日记(一)------图表组成元素
1.使用函数绘制matplotlib的图表组成元素 (1)函数plot---变量的变化趋势 import matplotlib.pyplot as plt import numpy as np x ...
- 一行代码让matplotlib图表变高大上
1 简介 matplotlib作为Python生态中最流行的数据可视化框架,虽然功能非常强大,但默认样式比较简陋,想要制作具有简洁商务风格的图表往往需要编写众多的代码来调整各种参数. 而今天要为大家介 ...
- Matplotlib 图表的基本参数设置
1.图名,图例,轴标签,轴边界,轴刻度,轴刻度标签 # 图名,图例,轴标签,轴边界,轴刻度,轴刻度标签等 df = pd.DataFrame(np.random.rand(10,2),columns= ...
- matplotlib图表介绍
Matplotlib 是一个python 的绘图库,主要用于生成2D图表. 常用到的是matplotlib中的pyplot,导入方式import matplotlib.pyplot as plt 一. ...
- [Python] Matplotlib 图表的绘制和美化技巧
目录 在一张画布中绘制多个图表 加图表元素 气泡图 组合图 直方图 雷达图 树状图 箱形图 玫瑰图 在一张画布中绘制多个图表 Matplotlib模块在绘制图表时,默认先建立一张画布,然后在画布中显示 ...
- Matplotlib 图表的样式参数
1. import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline # 导入相关 ...
- Matplotlib 图表绘制工具学习笔记
import numpy as np import matplotlib.pyplot as plt import pandas as pd arr1 = np.random.rand(10)#一维数 ...
- Python tkinter库将matplotlib图表显示在GUI窗口上,并实时更新刷新数据
代码 1 ''' 2 使用matplotlib创建图表,并显示在tk窗口 3 ''' 4 import matplotlib.pyplot as plt 5 from matplotlib.pylab ...
- python matplotlib 图表局部放大
import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes ...
随机推荐
- 在Pycharm中使用Pandas时输出结果中列被省略的解决办法
在使用pycharm学习pandas的过程中我发现好多时候会发生不能输出所有列的情况,上网搜了一下,发现解决的办法是使用一个输出控制的函数. 在下面的代码中我们只是输出starbucks_store_ ...
- CF 528D. Fuzzy Search NTT
CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...
- RsaUtils
参考来源:https://www.cnblogs.com/pcheng/p/9629621.html 里面的这段话,非常好 RSA加密对明文的长度有所限制,规定需加密的明文最大长度=密钥长度-11(单 ...
- Docker镜像加速器配置
一.为什么要配置Docker镜像加速器 因为我们默认pull的docker镜像是从Docker Hub来下载,由于其服务器在国外,速度会比较慢.因此我们可以配置成国内的镜像仓库,这样可以加速镜像的上传 ...
- Kotlin 随笔小计
最近准备学Kotlin 现在Kotlin也能支持IOS开发了,准备后面买个Mac也能进行IOS开发 当然目标还是看着能不能把一些小的Android项目重构下 也算是定个目标吧,由于沉迷吃鸡,日志都没怎 ...
- widerface---VOC
import os, h5py, cv2, sys, shutil import numpy as np from xml.dom.minidom import Document rootdir = ...
- numpy 数组索引数组
在numpy中,数组除了可以被整数索引,还可以被数组索引. a[b]就是已数组b的元素为索引,读取数组a的值. 当被索引数组a是一维数组,b是一维或则多维数组时,结果维度维度与索引数组b相同. a = ...
- 使用 jquery.wordexport.js导出的Word排版
js导出word文档所需要的两个插件: FileSaver.js jquery.wordexport.js 使用jquery.wordexport.js这个插件导出的word文档的排版方式: 编辑器打 ...
- C#流程控制语句--迭代语句(while,do....while, for , foreach)
迭代语句:有的时候,可能需要多次执行同一块代码.函数中的第一个语句先执行,接着是第二个语句,依此类推. 迭代语句:while(先检查后执行) while(条件表达式 bool类型) { 代码语句 } ...
- imp、exp命令导出优化
本文对Oracle数据的导入导出 imp ,exp 两个命令进行了介绍, 并对其对应的參数进行了说明,然后通过一些演示样例进行演练,加深理解.文章最后对运用这两个命令可能出现的问题(如权限不够,不同o ...