一、函数

1、plot()    ——   展示变量的趋势与变化

用法:

plt.plot(x,y,ls="-",lw=2,label="plot figure")

参数说明:

x:x轴上的数值
y:y轴上的数值
ls:折线图的线条风格
lw:折线图的线条宽度
label:标记图形内容的标签文本

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.cos(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-",lw=2,label="plot figure") #生成图像 plt.legend() #生成文本标签 plt.show() #显示图像

生成的图像:

2、散点图scatter()  ——  寻找变量间的关系

plt.scatter(x,y,c="b",label="scatter figure")

参数说明:

x:x轴上的数值
y:y轴上的数值
c:散点图中标记的颜色
label:标记图形内容的标签文本

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据 plt.scatter(x,y,label="scatter figure") plt.legend() plt.show()

生成图像:

3、xlim()  ——  设置想轴的数值显示范围

plt.xlim(xmin,xmax)

参数说明:

xmin:x轴上的最小值
xmax:x轴上的最大值
注:ylim()与xlim()的用法相同

代码示例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据 plt.scatter(x,y,label="scatter figure") plt.legend() plt.xlim(0.05,10)
plt.ylim(0,1) plt.show()

生成的图像:

4、xlabel() —— 设置x轴的标签文本

plt.xlabel(string)

参数说明:

string:标签文本内容
注:xlabel()与ylabel()用法相同

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.random.rand(1000) #定义生成图像所需要的数据 plt.scatter(x,y,label="scatter figure") plt.legend() plt.xlabel("x-axis")
plt.ylabel("y-axis") plt.show()

输出图像:

5、grid() —— 绘制刻度线的网格线

plt.grid(linestyle=":",color="r")

参数说明:

linestyle:网格线的线条风格
color:网格线的线条颜色

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.xlabel("x-axis")
plt.ylabel("y-axis") plt.grid(linestyle=":",color="r") plt.show()

输出图像:

6、函数axhline() —— 绘制平行于x轴的水平参考线

plt.axhline(y=0.0,c="r",ls="--",lw=2)

参数说明:

y:水平参考线的出发点
c:参考线的线条颜色
ls:参考线的线条风格
lw:参考线的线条宽度

代码示例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.axhline(y=0.0,c="r",ls="--",lw=2)
plt.axvline(x=4.0,c="r",ls="--",lw=2) plt.show()

输出图像:

7、函数axvspqn()绘制垂直于x轴的参考区域

plt.axvspan(xmin=1.0,xmax=2.0,facecolor="y",alpha=0.3)

参数说明:

xmin:参考区域的起始位置
xmax:参考区域的终止位置
facecolor:参考区域的填充颜色
alpha:参考区域的填充颜色的透明度
注:上面的功能同样可用在axhspan()

代码示例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.axvspan(xmin=4.0,xmax=6.0,facecolor="y",alpha=0.3)
plt.axhspan(ymin=0.0,ymax=0.5,facecolor="y",alpha=0.3) plt.show()

输出图像:

8、函数annotate() —— 添加图形内容细节的指向型注释文本

plt.annotate(string,xy=(np.pi/2,1.0),xytext=((np.pi/2)+0.15,1.5),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))

参数说明:

string:图形内容注释文本
xy:被注释图形内容的位置坐标
xytext:注释文本的位置坐标
weight:注释文本的字体粗细风格
color:注释文本的字体颜色
arrowprops:指示被注释内容的箭头的属性字典

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.annotate("maximum",xy=(np.pi/2,1.0),xytext=((np.pi/2)+1.0,0.8),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b")) plt.show()

输出图像:

9、函数text() —— 添加图形内容细节的无指向型注释文本

plt.text(x,y,string,weight="bold",color="b")

参数说明:

x:注释文本内容所在的位置的横坐标
y:注释文本内容所在的位置的纵坐标
string:注释文本内容
weight:注释文本内容的粗细的风格
color:注释文本内容的字体颜色

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.text(3.10,0.09,"y = sin(x)",weight="bold",color="b") plt.show()

图像输出:

10、函数title() —— 添加图形内容的标题

plt.title(string)

代码实例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend() plt.title("y = sin(x)") plt.show()

图像输出:

11、函数legend() —— 标识不同图形的文本标签图例

plt.legend(loc="lower left")

代码实现:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.05,10,1000)
y = np.sin(x) #定义生成图像所需要的数据 plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") plt.legend(loc="lower left") plt.show()

输出图像:

组合应用,代码示例:

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.5,3.5,100)
y = np.sin(x)
y1 = np.random.rand(100) #定义生成图像所需要的数据 #生成散点图
plt.scatter(x,y1,c="0.25",label = "scatter figure")
#生成函数图像
plt.plot(x,y,ls="--",lw=2,c="c",label="plot figure")
#设置图像上边框和右边框的颜色为无
for spine in plt.gca().spines.keys():
if spine == "top" or spine == "right":
plt.gca().spines[spine].set_color("none")
#调整刻度位置
plt.gca().xaxis.set_ticks_position("bottom")
plt.gca().yaxis.set_ticks_position("left")
#设置坐标范围
plt.xlim(0.0,4.0)
plt.ylim(-3.0,3.0)
#设置坐标轴名称
plt.xlabel("x-axis")
plt.ylabel("y-axis")
#显示网格图
plt.grid(True,ls=":",color="r")
#绘制平行于x轴的水平参考线
plt.axhline(y=0.0,c="r",ls="--",lw=2)
#绘制垂直于x轴的参考区域
plt.axvspan(xmin=1.0,xmax=2.0,facecolor="y",alpha=0.3)
#添加指向型注释文本
plt.annotate("maximum",xy=(np.pi/2,1.0),xytext=((np.pi/2)+0.15,1.5),weight="bold",color="r",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="r"))
plt.annotate("spines",xy=(0.75,-3),xytext=(0.35,-2.25),weight="bold",color="b",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
plt.annotate("",xy=(0,-2.78),xytext=(0.4,-2.32),
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
plt.annotate("",xy=(3.5,-2.98),xytext=(3.0,-2.80),weight="bold",color="r",
arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b"))
#设置文本注释框
plt.text(2.5,-2.50,"'|' is tickline",weight="bold",color="b")
plt.text(2.5,-2.70,"3.5 is tickline1",weight="bold",color="b")
#设置图像标题
plt.title("Structure of Matplotlib")
#显示图例
plt.legend(loc="upper right")
#显示图像
plt.show()

图像输出:

matplotlib图表组成元素的更多相关文章

  1. matplotlib学习日记(一)------图表组成元素

      1.使用函数绘制matplotlib的图表组成元素 (1)函数plot---变量的变化趋势 import matplotlib.pyplot as plt import numpy as np x ...

  2. 一行代码让matplotlib图表变高大上

    1 简介 matplotlib作为Python生态中最流行的数据可视化框架,虽然功能非常强大,但默认样式比较简陋,想要制作具有简洁商务风格的图表往往需要编写众多的代码来调整各种参数. 而今天要为大家介 ...

  3. Matplotlib 图表的基本参数设置

    1.图名,图例,轴标签,轴边界,轴刻度,轴刻度标签 # 图名,图例,轴标签,轴边界,轴刻度,轴刻度标签等 df = pd.DataFrame(np.random.rand(10,2),columns= ...

  4. matplotlib图表介绍

    Matplotlib 是一个python 的绘图库,主要用于生成2D图表. 常用到的是matplotlib中的pyplot,导入方式import matplotlib.pyplot as plt 一. ...

  5. [Python] Matplotlib 图表的绘制和美化技巧

    目录 在一张画布中绘制多个图表 加图表元素 气泡图 组合图 直方图 雷达图 树状图 箱形图 玫瑰图 在一张画布中绘制多个图表 Matplotlib模块在绘制图表时,默认先建立一张画布,然后在画布中显示 ...

  6. Matplotlib 图表的样式参数

    1. import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline # 导入相关 ...

  7. Matplotlib 图表绘制工具学习笔记

    import numpy as np import matplotlib.pyplot as plt import pandas as pd arr1 = np.random.rand(10)#一维数 ...

  8. Python tkinter库将matplotlib图表显示在GUI窗口上,并实时更新刷新数据

    代码 1 ''' 2 使用matplotlib创建图表,并显示在tk窗口 3 ''' 4 import matplotlib.pyplot as plt 5 from matplotlib.pylab ...

  9. python matplotlib 图表局部放大

    import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes ...

随机推荐

  1. 利用matplotlib库和numpy库画数学图形

    首先,电脑要安装到matplotlib库和numpy库,这可以通过到命令符那里输入“pip install matplotlib ”,两个操作一样 其次,参照下列代码: import numpy as ...

  2. 连接centos服务器gui

    https://blog.csdn.net/jack_nichao/article/details/78289398 配置好后下载vnc viewer 进行连接. Ubuntu:https://www ...

  3. Python 框架化代码的学习

    1 def 1: 2 pass 3 4 def 2: 5 pass 6 7 def 3: 8 pass 从Python初学我们习惯的风格就是如上图,把函数方法直接放到全局来写,这的确是最简单易懂的方式 ...

  4. linux服务基础(一)之CentOS6编译安装httpd2.4

    安装http-2.4 Http依赖于apr-1.4+,apr-util-1.4+ CentOS6上默认是apr-1.3,apr-util1.3 先编译安装apr-1.5,apr-util-1.5 开始 ...

  5. 【转载】JVM 学习——垃圾收集器与内存分配策略

    本文主要是对<深入理解java虚拟机 第二版>第三章部分做的总结,文章中大部分内容都来自这章内容,也是博客 JVM 学习的第二部分. 简述 说到垃圾收集(Garbage Collectio ...

  6. MySQL之 视图,触发器,存储过程,函数,事物,数据库锁,数据库备份

    1.视图 视图: 是一个虚拟表,其内容由查询定义: 视图有如下特点;  1. 视图的列可以来自不同的表,是表的抽象和逻辑意义上建立的新关系.  2. 视图是由基本表(实表)产生的表(虚表).  3. ...

  7. P2678 跳石头

    传送门 思路: 二分跳跃的最短距离 mid .暴力判断如果有两个石头直接的距离小于 mid ,就把这个石头拿走.如果拿走的石头数目 cnt ≤ m,说明二分的答案可行,ans = mid,接着二分更短 ...

  8. 遗传算法(GA)

    来自:https://blog.csdn.net/u010451580/article/details/51178225 遗传算法是模仿生物进化机制的随机全局搜索和优化方法.借鉴达尔文进化论和孟德尔的 ...

  9. 解决IE11安装时需要“获取更新”(IE11离线安装)

    方法一:说明:目前是针对Windows7 64位操作系统安装! 1. 在C盘下新建文件夹,取名为“IE11”. 2. 将官网下载的IE11离线包放到此文件夹中. 3. win + r 打开运行窗口,输 ...

  10. 如何在开发过程中获取客户端的ip呢?

    在开发工作中,我们常常需要获取客户端的IP.一般获取客户端的IP地址的方法是:request.getRemoteAddr();但是在通过了Apache,Squid等反向代理软件就不能获取到客户端的真实 ...