边框回归(bounding-Box regression)
转自:https://blog.csdn.net/zijin0802034/article/details/77685438
- 为什么要边框回归?
- 什么是边框回归?
- 边框回归怎么做的?
- 边框回归为什么宽高,坐标会设计这种形式?
- 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?
1、为什么要边框回归?
对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。
2、边框回归是什么?
对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口G^G^。
边框回归的目的既是:给定(Px,Py,Pw,Ph)寻找一种映射f, 使得f(Px,Py,Pw,Ph)=(Gx^,Gy^,Gw^,Gh^) 并且(Gx^,Gy^,Gw^,Gh^)≈(Gx,Gy,Gw,Gh)
3、边框回归是怎么做的?
那么经过何种变换才能从图 2 中的窗口 P 变为窗口G^G^呢? 比较简单的思路就是: 平移+尺度放缩
4、为什么宽高尺度会设计这种形式?
这边我重点解释一下为什么设计的tx,tytx,ty为什么除以宽高,为什么tw,thtw,th会有log形式!!!
首先CNN具有尺度不变性, 以图3为例:
x,y 坐标除以宽高
上图的两个人具有不同的尺度,因为他都是人,我们得到的特征相同。假设我们得到的特征为ϕ1,ϕ2,那么一个完好的特征应该具备ϕ1=ϕ。ok,如果我们直接学习坐标差值,以x坐标为例,xi,pi分别代表第i个框的x坐标,学习到的映射为ff, f(ϕ1)=x1−p1,同理f(ϕ2)=x2−p2。从上图显而易见,x1−p1≠x2−p1。也就是说同一个x对应多个y,这明显不满足函数的定义。边框回归学习的是回归函数,然而你的目标却不满足函数定义,当然学习不到什么。
宽高坐标Log形式
我们想要得到一个放缩的尺度,也就是说这里限制尺度必须大于0。我们学习的tw,th怎么保证满足大于0呢?直观的想法就是EXP函数,如公式(3), (4)所示,那么反过来推导就是Log函数的来源了。
5、为什么IoU较大,认为是线性变换?
当输入的 Proposal 与 Ground Truth 相差较小时(RCNN 设置的是 IoU>0.6), 可以认为这种变换是一种线性变换, 那么我们就可以用线性回归来建模对窗口进行微调, 否则会导致训练的回归模型不 work(当 Proposal跟 GT 离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这里我来解释:
Log函数明显不满足线性函数,但是为什么当Proposal 和Ground Truth相差较小的时候,就可以认为是一种线性变换呢?大家还记得这个公式不?参看高数1。
现在回过来看公式(8):
当且仅当的时候,才会是线性函数,也就是宽度和高度必须近似相等。
边框回归(bounding-Box regression)的更多相关文章
- [转载]边框回归(Bounding Box Regression)
[转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好, ...
- 边框回归(Bounding Box Regression)详解
原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Pa ...
- [转]边框回归(Bounding Box Regression)详解
https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, ...
- 【边框回归】边框回归(Bounding Box Regression)详解(转)
转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年 ...
- 目标检测中bounding box regression
https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-b ...
- 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...
- 目标检测中的bounding box regression
目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...
- 论文阅读笔记四十八:Bounding Box Regression with Uncertainty for Accurate Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在 ...
随机推荐
- 模块简介:(logging)(re)(subprocess)
''' logging模块: logging的日志可以分为 debug():Detailed information, typically of interest only when diagnosi ...
- 【Teradata】使用arcmain进行不落地数据迁移(管道)
1.备份脚本准备 //脚本bak_ds.arc .logon 192.168.253.222/sysdba,learning1510; archive data tables(DS) ,release ...
- C#基础知识之字符串比较方法:“==”操作符;RefernceEquals;String.Equals方法;String.Compare方法;String.CompareOrdinal方法。
一.“==”操作符:String.Equals:ReferenceEquals 方法 1.在编程中实际上我们只需要这两种比较,c#中类型也就这两种 (1)值类型的比较:一般我们就是判断两个值类型实例各 ...
- day21(1)---python的内存管理
垃圾回收机制: 不能被程序访问到的数据,就称之为垃圾. 引用计数:引用计数是用来记录值的内存地址被记录的次数的 每一次对值地址的引用都可以使得该值的引用计数+1 每一次对值地址的释放都可以使得该值的引 ...
- 网络虚拟化基础一:linux名称空间Namespaces
一 介绍 如果把linux操作系统比作一个大房子,那命名空间指的就是这个房子中的一个个房间,住在每个房间里的人都自以为独享了整个房子的资源,但其实大家仅仅只是在共享的基础之上互相隔离,共享指的是共享全 ...
- stm32之不定长接收
使用STM32CUBE_MAX配置工程,可以简化编程工作量,但是这样我们会遇到一些麻烦,比如利用串口接收不知道长度的数据的时候,我们可能会无从下手,前段时间看到他人程序中的串口不定长接收,此次特意总结 ...
- 判断语句之if..else if...else
判断语句之if..else if...else if语句第三种格式:if..else if...else 格式: 执行流程 首先判断关系表达式1看其结果是true还是false 如果是true就执行语 ...
- 好的LCT板子和一句话
typedef long long ll; const int maxn = 400050; struct lct { int ch[maxn][2], fa[maxn], w[maxn]; bool ...
- たくさんの数式 / Many Formulas AtCoder - 2067 (枚举二进制)
Problem Statement You are given a string S consisting of digits between 1 and 9, inclusive. You can ...
- HashMap 与 Hashtable 的区别
Hashtable t 小写 二者用法一致 都实现Map接口 1.HashMap 的键值可以为null,而Hashtable不允许("null" 不是 null 前者是字符串 ...