转自:https://blog.csdn.net/zijin0802034/article/details/77685438

  • 为什么要边框回归?
  • 什么是边框回归?
  • 边框回归怎么做的?
  • 边框回归为什么宽高,坐标会设计这种形式?
  • 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?

1、为什么要边框回归?

对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。
2、边框回归是什么?

对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口G^G^。

边框回归的目的既是:给定(Px,Py,Pw,Ph)寻找一种映射f, 使得f(Px,Py,Pw,Ph)=(Gx^,Gy^,Gw^,Gh^) 并且(Gx^,Gy^,Gw^,Gh^)≈(Gx,Gy,Gw,Gh)

3、边框回归是怎么做的?

那么经过何种变换才能从图 2 中的窗口 P 变为窗口G^G^呢? 比较简单的思路就是: 平移+尺度放缩

4、为什么宽高尺度会设计这种形式?
这边我重点解释一下为什么设计的tx,tytx,ty为什么除以宽高,为什么tw,thtw,th会有log形式!!!

首先CNN具有尺度不变性, 以图3为例:

x,y 坐标除以宽高
上图的两个人具有不同的尺度,因为他都是人,我们得到的特征相同。假设我们得到的特征为ϕ1,ϕ2,那么一个完好的特征应该具备ϕ1=ϕ。ok,如果我们直接学习坐标差值,以x坐标为例,xi,pi分别代表第i个框的x坐标,学习到的映射为ff, f(ϕ1)=x1−p1,同理f(ϕ2)=x2−p2。从上图显而易见,x1−p1≠x2−p1。也就是说同一个x对应多个y,这明显不满足函数的定义。边框回归学习的是回归函数,然而你的目标却不满足函数定义,当然学习不到什么。

宽高坐标Log形式
我们想要得到一个放缩的尺度,也就是说这里限制尺度必须大于0。我们学习的tw,th怎么保证满足大于0呢?直观的想法就是EXP函数,如公式(3), (4)所示,那么反过来推导就是Log函数的来源了。

5、为什么IoU较大,认为是线性变换?
当输入的 Proposal 与 Ground Truth 相差较小时(RCNN 设置的是 IoU>0.6), 可以认为这种变换是一种线性变换, 那么我们就可以用线性回归来建模对窗口进行微调, 否则会导致训练的回归模型不 work(当 Proposal跟 GT 离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这里我来解释:

Log函数明显不满足线性函数,但是为什么当Proposal 和Ground Truth相差较小的时候,就可以认为是一种线性变换呢?大家还记得这个公式不?参看高数1。

现在回过来看公式(8):

当且仅当的时候,才会是线性函数,也就是宽度和高度必须近似相等。

边框回归(bounding-Box regression)的更多相关文章

  1. [转载]边框回归(Bounding Box Regression)

    [转载]边框回归(Bounding Box Regression) 许多模型中都应用到了这种方法来调整piror使其和ground truth尽量接近,例如之前自己看过的SSD模型 这篇文章写的很好, ...

  2. 边框回归(Bounding Box Regression)详解

    原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Pa ...

  3. [转]边框回归(Bounding Box Regression)详解

    https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, ...

  4. 【边框回归】边框回归(Bounding Box Regression)详解(转)

    转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年 ...

  5. 目标检测中bounding box regression

    https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-b ...

  6. 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)

    论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...

  7. 目标检测中的bounding box regression

    目标检测中的bounding box regression 理解:与传统算法的最大不同就是并不是去滑窗检测,而是生成了一些候选区域与GT做回归.

  8. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

    Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:3 ...

  9. 论文阅读笔记四十八:Bounding Box Regression with Uncertainty for Accurate Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在 ...

随机推荐

  1. vs 2015安装包

    Visual Studio 2015 下载含(更新3)及密钥 Visual Studio 2015 是一个丰富的集成开发环境,可用于创建出色的 Windows.Android 和 iOS 应用程序以及 ...

  2. php7 的yum源

    yum源默认的版本太低了,手动安装有一些麻烦,想采用Yum更新安装的可以使用下面的方案: 1.检查当前安装的PHP包 yum list installed | grep php 如果有安装的PHP包, ...

  3. fliplr函数

    fliplr  左右翻转矩阵 语法: B = fliplr(A) 将矩阵A的列绕垂直轴进行左右翻转 matabc 如果A是一个行向量,fliplr(A)将A中元素的顺序进行翻转. 如果A是一个列向量, ...

  4. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  5. Nginx部署静态页

    简答说一下如何用Nginx部署静态网页,并绑定域名访问 1.通过FTP上传静态页到服务器指定目录 2.编写nginx的.conf文件 3.重启nginx 如图,这是centos上传文件路径 nginx ...

  6. 软工+C(2): 分数和checklist

    // 上一篇:题目设计.点评和评分 // 下一篇:超链接 教学里,建立清晰明确的评分规则并且一开始就公布,对于教师.助教.学生都是重要的. 公布时机 在课程开始的时候,就需要确定并公布评分机制,随着课 ...

  7. Siamese network 孪生神经网络

    Siamese network 孪生神经网络 https://zhuanlan.zhihu.com/p/35040994 https://blog.csdn.net/shenziheng1/artic ...

  8. git 学习(1) ----- git 本地仓库操作

    最近在项目中使用git了,在实战中才知道,以前学习的git 知识只是皮毛,需要重新系统的学一下,读了一本叫  Learn Git in a Month of Lunches 的书籍,这本书通俗易懂,使 ...

  9. 关于vue-cli的项目结构【转】

    一.总体框架 一个vue-cli的项目结构如下,其中src文件夹是需要掌握的,所以本文也重点讲解其中的文件,至于其他相关文件,了解一下即可. vue-cli项目总体结构 二.文件结构细分 1.buil ...

  10. CAN报文 Intel 格式与Motorola 格式的区别

    当一个信号的数据长度不超过 1 个字节(8 位)时,Intel 与 Motorola 两种格式的 编码结果没有什么不同,完全一样.当信号的数据长度超过 1 个字节(8 位)时,两者的编码结果出现 了明 ...