P5239 回忆京都(洛谷3月月赛T2)
题目描述
射命丸文在取材中发现了一个好玩的东西,叫做组合数。
组合数的定义如下:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。所有组合的数量,就是组合数。
$\sum_{i=1}^n \sum_{j=1}^m C^i_j$,其中当i>j的时候,钦定$C^i_j$为0
她也很快就算出来了,不过对自己的答案不是很充满信心,因此你决定帮助她。然而没事找事的她一下子算了q次对于不同的n,m的结果,因此这只能劳烦你了。由于你不打算真正地帮助她,你无需把答案对998244353取模,也无需对64123取模,只要告诉她对取模之后的答案即可。
输入输出格式
输入格式:
第一行输入一个q,表示有q次询问。
第二行开始,一共q行,每行两个数字n,m,意思如题所示。
输出格式:
一共q行,对于每一个询问,都输出一个答案。
数据范围:n,m<=1000
solution
容易想到预处理出杨辉三角, c[i][j]表示$c^j_i$ %mod,递推公式是c[i][j]=c[i-1][j]+c[i-1][j-1],注意处理c[i][0]=1;
这样每次询问是O(nm),总的时间复杂度是O(qnm),TLE3个点,需要优化
通过模拟发现,题目中要求的数的和实际上在杨辉三角中是一个矩形的区域,也就是右下角下标为c[m][n]
例如,当m=4,n=3时,就是矩形区域的和,所以只需要维护一个二维前缀和就行了
一个大坑:当预处理二维前缀和时因为经过了取模,所以容易出现新的前缀和为负数的情况,而我们希望得到的一定是个正数,所以每一项s[i][j]=(s[i][j]+mod)%mod;
因为这个坑WA了三个
code
#include<cstdio>
#include<iostream>
#include<cstring>
#define mod 19260817//咳咳
#define maxn 1020
using namespace std;
long long s[maxn][maxn],ts[maxn][maxn];
int n,m,t,x,ans,tmp;
void init(int n)
{
for(int i=;i<=n;++i)
{
s[i][]=;
}
for(int i=;i<=n;++i)
{
for(int j=;j<=n;++j)
{
if(j<=i) s[i][j]=(s[i-][j]+s[i-][j-])%mod;//杨辉三角 ts[i][j]=(ts[i-][j]+ts[i][j-]-ts[i-][j-]+s[i][j]+mod/*关键*/)%mod;//二维前缀和
} } }
int main()
{
scanf("%d",&t);
init();//预处理杨辉三角与前缀和
for(int k=;k<=t;++k)
{
scanf("%d%d",&n,&m);
printf("%lld\n",ts[m][n]);
}
return ;
}
P5239 回忆京都(洛谷3月月赛T2)的更多相关文章
- 「P4994」「洛谷11月月赛」 终于结束的起点(枚举
题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...
- 洛谷4月月赛R2
洛谷4月月赛R2 打酱油... A.koishi的数学题 线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...
- 洛谷3月月赛 R1 Step! ZERO to ONE
洛谷3月月赛 R1 Step! ZERO to ONE 普及组难度 290.25/310滚粗 t1 10分的日语翻译题....太难了不会... t2 真·普及组.略 注意长为1的情况 #include ...
- 【洛谷5月月赛】玩游戏(NTT,生成函数)
[洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了 ...
- 【LGR-054】洛谷10月月赛II
[LGR-054]洛谷10月月赛II luogu 成功咕掉Codeforces Round #517的后果就是,我\(\mbox{T4}\)依旧没有写出来.\(\mbox{GG}\) . 浏览器 \( ...
- 【LGR-051】洛谷9月月赛
[LGR-051]洛谷9月月赛 luogu 签到题 description 给出\(K\)和质数\(m\),求最小的\(N\)使得\(111....1\)(\(N\)个\(1\))\(\equiv k ...
- 「LGR-049」洛谷7月月赛 D.Beautiful Pair
「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...
- 洛谷9月月赛round2
洛谷9月月赛2 t1 题意:懒得说了 分析:模拟 代码: program flag; var a:..,..]of char; n,i,m,j,x,y,ans,k:longint; begin ass ...
- 「P4996」「洛谷11月月赛」 咕咕咕(数论
题目描述 小 F 是一个能鸽善鹉的同学,他经常把事情拖到最后一天才去做,导致他的某些日子总是非常匆忙. 比如,时间回溯到了 2018 年 11 月 3 日.小 F 望着自己的任务清单: 看 iG 夺冠 ...
随机推荐
- Zabbix监控原理及架构
什么是Zabbix? Zabbix是一个用于网络,操作系统和应用程序的开源监控软件,它旨在监视和跟踪各种网络服务,服务器和其他网络硬件的状态. 为什么需要对各类系统进行监控? 在系统构建时的正常流程中 ...
- JS的splice()方法在for循环中使用可能会遇到的坑
在写JS代码时,我们常常使用 splice 函数来删除数组中的元素,因为 splice 函数会直接对数组进行修改,从而不需再自己写一个算法来移动数组中的其他元素填补到被删除的位置.splice 功能十 ...
- Java开发笔记(二十二)神奇的冒号
Java中的标点符号主要有两类用途,一类是运算符,包括加号+.减号-.乘号*.除号/.取余号%.等号=.大于号>.小于号<.与号&.或号|.非号!.异或号^等等,另一类则是分隔符, ...
- laravel5集成支付宝alipay扫码支付流程(Laravel 支付解决方案)
首先我们来探讨如何在Laravel应用中使用支付宝进行支付,对此,GitHub上有很多相关的包,其中最流行的两个包:Omnipay For Laravel 5 & Lumen 和 Larave ...
- Sql server 2014 数据库还原奇异现象
用A库来还原B库 对正在使用的B库执行还原,还原时修改数据库名称,还原出错,提示数据库正在使用.删除B库,仍然提示正在使用,感觉像僵尸 重启SQL SERVER,因B库已删除,在A库上点击 ...
- python 生成图形验证码
文章链接:https://mp.weixin.qq.com/s/LYUBRNallHcjnhJb1R3ZBg 日常在网站使用过程中经常遇到图形验证,今天准备自己做个图形验证码,这算是个简单的功能,也适 ...
- Bootstrap-table 部分浏览器显示不出来
一.问题 近日,写了一个ASP.Net项目,但是bootstrap-table在别人的电脑上显示不出来,在自己的电脑上能显示,有些浏览器也是能显示,但部分浏览器就是显示不出来.找了很多原因,最后有个老 ...
- Android远程桌面助手之性能监测篇
<Android下获取FPS的几种方法>一文中提到了Gamebench工具,它不仅可以获取FPS,还可以获取CPU及内存占用率等系统状态信息.其局限性也非常明显,切换应用时需要重新选择监控 ...
- java新知识系列 二
1:数据库事务隔离以及事务隔离的级别 数据库事务隔离: 在数据库操作中,为了有效保证并发读取数据的正确性,提出的事务隔离级别:为了解决更新丢失,脏读,不可重读(包括虚读和幻读)等问题在标准SQL规 ...
- Linux Mysql数据库安全配置
Linux Mysql数据库安全配置 目录: 1.修改mysql管理员账号root的密码(2种方法) 2.修改mysql管理员账号root 3.mysql管理员root账号密码遗忘解决办法(2种方法 ...