spring boot sharding-jdbc实现分佈式读写分离和分库分表的实现
分布式读写分离和分库分表采用sharding-jdbc实现。
sharding-jdbc是当当网推出的一款读写分离实现插件,其他的还有mycat,或者纯粹的Aop代码控制实现。
接下面用spring boot 2.1.4 release 版本实现读写分离。
1. 引入jar包
<!-- lombok -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!-- druid -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.9</version>
</dependency>
<!-- sharding-jdbc -->
<dependency>
<groupId>com.dangdang</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>1.5.4</version>
</dependency> <dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency> 2. 添加配置文件
分别添加三份,配置为database0,database1,database2。
3. 添加DataSourceConfig
package com.fintecher.cn.elasticjobdemo.config; import com.dangdang.ddframe.rdb.sharding.api.ShardingDataSourceFactory;
import com.dangdang.ddframe.rdb.sharding.api.rule.DataSourceRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.ShardingRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.TableRule;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.DatabaseShardingStrategy;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.TableShardingStrategy;
import com.dangdang.ddframe.rdb.sharding.keygen.DefaultKeyGenerator;
import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
import com.fintecher.cn.elasticjobdemo.service.DatabaseShardingAlgorithm;
import com.fintecher.cn.elasticjobdemo.service.TableShardingAlgorithm;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration; import javax.sql.DataSource;
import java.sql.SQLException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
@Configuration
public class DataSourceConfig { @Autowired
private Database1Config database1Config; @Autowired
private Database2Config database2Config; @Autowired
private DatabaseShardingAlgorithm databaseShardingAlgorithm; @Autowired
private TableShardingAlgorithm tableShardingAlgorithm; @Bean
public DataSource getDataSource() throws SQLException {
return buildDataSource();
} private DataSource buildDataSource() throws SQLException {
//设置从库数据源集合
Map<String, DataSource> slaveDataSourceMap = new HashMap<>();
slaveDataSourceMap.put(database1Config.getDatabaseName(), database1Config.createDataSource());
slaveDataSourceMap.put(database2Config.getDatabaseName(), database2Config.createDataSource()); //设置默认数据库
DataSourceRule dataSourceRule = new DataSourceRule(slaveDataSourceMap, database1Config.getDatabaseName()); //分表设置
TableRule orderTableRules = TableRule.builder("user").actualTables(Arrays.asList("user_0", "user_1")).dataSourceRule(dataSourceRule).build(); //分库分表策略
ShardingRule shardingRule = ShardingRule.builder()
.dataSourceRule(dataSourceRule)
.tableRules(Arrays.asList(orderTableRules))
.databaseShardingStrategy(new DatabaseShardingStrategy("id", databaseShardingAlgorithm))
.tableShardingStrategy(new TableShardingStrategy("name", tableShardingAlgorithm))
.build(); //获取数据源对象
// DataSource dataSource = MasterSlaveDataSourceFactory.createDataSource("masterSlave", database0Config.getDatabaseName()
// , database0Config.createDataSource(), slaveDataSourceMap, MasterSlaveLoadBalanceStrategyType.getDefaultStrategyType()); DataSource dataSource = ShardingDataSourceFactory.createDataSource(shardingRule); return dataSource;
} @Bean
public KeyGenerator keyGenerator() {
return new DefaultKeyGenerator();
} }
4. 分库实现方案
@Component
public class DatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Long> { @Autowired
private Database2Config database2Config; @Autowired
private Database1Config database1Config; @Override
public String doEqualSharding(Collection<String> collection, ShardingValue<Long> shardingValue) {
Long value = shardingValue.getValue();
if (value <= 20L)
return database1Config.getDatabaseName();
else
return database2Config.getDatabaseName();
} @Override
public Collection<String> doInSharding(Collection<String> collection, ShardingValue<Long> shardingValue) {
return null;
} @Override
public Collection<String> doBetweenSharding(Collection<String> collection, ShardingValue<Long> shardingValue) {
return null;
} } 5. 分表实现方案
@Component
public class TableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<String> { @Override
public String doEqualSharding(Collection<String> tableNames, ShardingValue<String> shardingValue) {
for (String each : tableNames) {
if (each.endsWith("0") && shardingValue.getValue().contains("军")) {
return "user_0";
} else
return "user_1";
}
return null;
} @Override
public Collection<String> doInSharding(Collection<String> collection, ShardingValue<String> shardingValue) {
return null;
} @Override
public Collection<String> doBetweenSharding(Collection<String> collection, ShardingValue<String> shardingValue) {
return null;
} }
5. 环境参数配置
#jpa 配置
spring.jpa.database=mysql
spring.jpa.show-sql=true
spring.jpa.hibernate.ddl-auto=none
##数据库database0配置
database0.url=jdbc:mysql://192.168.3.32:3306/database0?characterEncoding=utf8&useSSL=false
database0.username=root
database0.password=123456
database0.driverClassName=com.mysql.jdbc.Driver
database0.databaseName=database0
##数据库database1地址
database1.url=jdbc:mysql://192.168.3.32:3306/database1?characterEncoding=utf8&useSSL=false
database1.username=root
database1.password=123456
database1.driverClassName=com.mysql.jdbc.Driver
database1.databaseName=database1
##数据库database2地址
database2.url=jdbc:mysql://192.168.3.32:3306/database2?characterEncoding=utf8&useSSL=false
database2.username=root
database2.password=123456
database2.driverClassName=com.mysql.jdbc.Driver
database2.databaseName=database2
6. 测试
7. 达到的效果
插入40条数据,20条在base1,20条在base2,base1中张军的数据在user_0,李四的数据在user_1
8. 问题总结:
在写代码的过程中自己引包的时候很随便,引入了一些其他的包,如下:
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-tx</artifactId>
<version>5.0.5.RELEASE</version>
</dependency>
<dependency>
<groupId>org.hibernate.javax.persistence</groupId>
<artifactId>hibernate-jpa-2.1-api</artifactId>
<version>1.0.0.Final</version>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactId>
<version>1.11.18.RELEASE</version>
</dependency>
导致在起服务的时候报 :
解决方案:
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
将上面三个包换成这两个即可。
9. 总结
在使用sharding-jdbc过程中实现了
SingleKeyDatabaseShardingAlgorithm 这个接口,这个接口有三个方法 equal,in ,between ,这三个方法的作用是在比较传送过来的值的时候分别用这三种方案进行比较。 10. 遗留问题,当把数据库分库分表存后,查询怎么获取到所有的数据呢。 11. 参考文档:https://yq.aliyun.com/articles/690021https://www.dalaoyang.cn/article/95?spm=a2c4e.11153940.blogcont690021.12.2057195fd9jYc312. 获取数据解决方案:
1. 广发复制法, 比如主表 Personal表,分别存在于多个数据库,关联表 persona_address, 只存在于主服务数据库,这种方式就是在修改了persona_address表之后将这张表再复制一份到从数据库,这样查询的时候从从数据库关联后再汇总查询。
2. 从数据库实时同步主数据库,从主数据库查询。
spring boot sharding-jdbc实现分佈式读写分离和分库分表的实现的更多相关文章
- mycat+mysql集群:实现读写分离,分库分表
1.mycat文档:https://github.com/MyCATApache/Mycat-doc 官方网站:http://www.mycat.org.cn/ 2.mycat的优点: 配 ...
- Mycat数据库中间件对Mysql读写分离和分库分表配置
Mycat是一个开源的分布式数据库系统,不同于oracle和mysql,Mycat并没有存储引擎,但是Mycat实现了mysql协议,前段用户可以把它当做一个Proxy.其核心功能是分表分库,即将一个 ...
- MyCat读写分离、分库分表
系统开发中,数据库是非常重要的一个点.除了程序的本身的优化,如:SQL语句优化.代码优化,数据库的处理本身优化也是非常重要的.主从.热备.分表分库等都是系统发展迟早会遇到的技术问题问题.Mycat是一 ...
- Mycat实现读写分离、分库分表
系统开发中,数据库是非常重要的一个点.除了程序的本身的优化,如:SQL语句优化.代码优化,数据库的处理本身优化也是非常重要的.主从.热备.分表分库等都是系统发展迟早会遇到的技术问题问题.Mycat是一 ...
- sharding demo 读写分离 U (分库分表 & 不分库只分表)
application-sharding.yml sharding: jdbc: datasource: names: ds0,ds1,dsx,dsy ds0: type: com.zaxxer.hi ...
- sharing-jdbc实现读写分离及分库分表
需求: 分库:按业务线business_id将不同业务线的订单存储在不同的数据库上: 分表:按user_id字段将不同用户的订单存储在不同的表上,为方便直接用非分片字段order_id查询,可使用基因 ...
- Mysql之Mycat读写分离及分库分表
## 什么是mycat ```basic 1.一个彻底开源的,面向企业应用开发的大数据库集群 2.支持事务.ACID.可以替代MySQL的加强版数据库 3.一个可以视为MySQL集群的企业级数据库,用 ...
- Ameba读写分离_mycat分库分表_redis缓存
1 数据库的读写分离 1.1 Amoeba实现读写分离 1.1.1 定义 Amoeba是一个以MySQL为底层数据存储,并对应用提供MySQL协议接口的proxy 优点: 配置读写分离时较为简单.配置 ...
- mysql主从读写分离,分库分表
1.分表 当项目上线后,数据将会几何级的增长,当数据很多的时候,读取性能将会下降,更新表数据的时候也需要更新索引,所以我们需要分表,当数据量再大的时候就需要分库了. a.水平拆分:数据分成多个表 b. ...
随机推荐
- Python的编码风格
1.采用四个空格作为缩进 2.一行代码不要超多79个字符 3.使用空行分割类,函数,以及大块代码 4.注释独占一行 5.使用文档字符串 6.操作符的两侧,逗号后面都要加空格(但是括号的里侧是不加的) ...
- lambda隐藏函数的嵌套
# 隐藏函数嵌套 f = (lambda a,b :a if a>b else b)(1000, 2000008) print((lambda a,g:a if a > g else g) ...
- Flask入门之结构重组(瘦身)-第13讲笔记
1. pip list Flask 0.10.1 Flask-Bootstrap 3.3.5.6 Flask-SQLAlchemy 2 Flask-Script 2.0.5 Flask-WTF 0.1 ...
- 开机出现 grub rescue> 终端模式修复方法
1. 先使用ls命令,找到Ubuntu的安装在哪个分区: grub rescue>ls 会罗列所有的磁盘分区信息,比方说: (hd0),(hd0,msdos3),(hd ...
- linux内核裁剪及编译可加载模块
一:linux内核裁剪: 1:编译内核源码: 今天的重点内容是内核驱动的编写,在编写驱动之前首先的了解linux内核源码,linux主要是由五个子系统组成:进程调度,内存管理,文件系统,网络接口以及进 ...
- Python初级教程
Python语言的特点 优点: - 简单 - 易学 - 免费,开源 - 高层语言 - 可移植性(可再多平台运行) - 解释性(不需要编译,可直接运行) - 面向对象 - 可扩展性(缺点:运行效率相对较 ...
- java中的取整(/)和求余(%)
1.取整运算符取整从字面意思理解就是被除数到底包含几个除数,也就是能被整除多少次,那么它有哪些需要注意的地方呢?先看下面的两端代码: int a = 10; int b = 3; double c= ...
- spring-boot-oracle spring-batch
Install/Configure Oracle express Oracle xe installer for linux (I don't care if you're running linux ...
- app后端设计(5)-- 表情的处理
在app的应用中,文字中夹带表情是个很常见,那么,在后台处理表情的时间,我遇到过下面两个问题: 1. 表情在mysql的存储. 表情的utf8编码,有时是有4个字节的,所以在一般的utf编码是没法存储 ...
- 【原】用Java编写第一个区块链(二)
这篇文章将去介绍如何使用区块链进行交易. [本文禁止任何形式的全文粘贴式转载,本文来自 zacky31 的随笔] 目标: 在上一篇文章中,我们已经创建了一个可信任的区块链.但是目前所创建的链中包含的有 ...