每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~

———————————————————————————

R语言︱文本挖掘套餐包之——XML+tm+SnowballC包

笔者寄语:文本挖掘、情感分析是目前非结构数据非常好用、有效的分析方式。

先针对文本挖掘这个套餐包做个简单了解。一般来说一个完整的文本挖掘解决流程是:

网页爬取数据——数据格式转化(分隔)——建立语料库——词频去噪——提取词干——创建文档-词频矩阵——后续分析(聚类、词云等)

XML包可以实现:网页爬取(还有Rcurl包)、格式转化

tm包可以实现:建立语料库、创建文档-词频矩阵、去噪(还有Rwordseg包是中文分词包)

SnowballC包可以实现:提取词干

本篇暂时不介绍XML包的数据爬取,先来看后面两个包的实现。

本文以一个案例介绍SnowballC包+tm包,使用的数据是R语言中自带的数据集,案例部分来源于参考西门吹风博客

一、函数调用、数据导入、生成语料库

library(SnowballC)
library(tm)
#vignette("tm")   #调用函数包文件

##1.Data Import  导入自带的路透社的20篇xml文档
#找到/texts/crude的目录,作为DirSource的输入,读取20篇xml文档
reut21578 <- system.file("texts", "crude", package = "tm")
reuters <- Corpus(DirSource(reut21578), readerControl = list(reader = readReut21578XML))
#Corpus命令读取文本并生成语料库文件

##2.Data Export  将生成的语料库在磁盘上保存成多个纯文本文件
writeCorpus(reuters)

##3.Inspecting Corpora 查看语料库
#can use inspect(),print(),summary()
#由于是从xml读取过来,所以现在的corpus还是非常杂乱
inspect(reuters)
print(reuters)
summary(reuters)

还有查看语料库的几个函数:inspect(),print(),summary()三个。

二、格式转化、去噪

##4.Transformations
#对于xml格式的文档用tm_map命令对语料库文件进行预处理,将其转为纯文本并去除多余空格,
#转换小写,去除常用词汇、合并异形同意词汇,如此才能得到类似txt文件的效果
#可以用inspect(reuters)查看此时的效果,明显好很多
reuters <- tm_map(reuters, PlainTextDocument)#将reuters转化为纯文本文件,去除标签
reuters <- tm_map(reuters, stripWhitespace)#去掉空白
reuters <- tm_map(reuters, tolower)#转换为小写
reuters <- tm_map(reuters, removeWords, stopwords("english"))#去停用词
</pre><pre code_snippet_id="1633870" snippet_file_name="blog_20160404_2_6556358" name="code" class="plain">#采用Porter's stemming 算法 提取词干
#Stem words in a text document using Porter's stemming algorithm
#install.packages("SnowballC")
tm_map(reuters, stemDocument)

三、创建文档-词频矩阵


关于下面的DocumentTermMatrix,前面一定要跟tm_map(reuters,PlainTextDocument),注意与前面的区别,以及执行代码的顺序。

##5.创建文档矩阵 Creating Term-Document Matrices
#将处理后的语料库进行断字处理,生成词频权重矩阵(稀疏矩阵)也叫词汇文档矩阵
reuters <- tm_map(reuters, PlainTextDocument)#将reuters转化为纯文本文件,去除标签
dtm <- DocumentTermMatrix(reuters)
#报错可看http://www.bubuko.com/infodetail-345849.html
#需先执行一下reuters <- tm_map(reuters, PlainTextDocument)
#查看词汇文档矩阵内容
inspect(dtm[1:5, 100:105])
#Non-/sparse entries: 1990/22390     ---非0/是0
#Sparsity           : 92%            ---稀疏性  稀疏元素占全部元素的比例
#Maximal term length: 17             ---切词结果的字符最长那个的长度
#Weighting          : term frequency (tf)---词频率
#如果需要考察多个文档中特有词汇的出现频率,可以手工生成字典,
#并将它作为生成矩阵的参数
d<-c("price","crude","oil","use")   #以这几个关键词为查询工具
inspect(DocumentTermMatrix(reuters,control=list(dictionary=d)))

DocumentTermMatrix生成的矩阵是文档-词频的稀疏矩阵,横向是文档文件,纵向是分出来的词,矩阵里面代表词频,如下图。



创建好文档词频矩阵之后,可以通过一些方式查看这个矩阵的内容,或者用函数筛选出你想要的结果等。

##6.在文本矩阵上实践 Operations on Term-Document Matrices
#找出次数超过50的词
findFreqTerms(dtm, 50)
#找出与‘opec’单词相关系数在0.8以上的词
findAssocs(dtm,"opec",0.8)

#因为生成的矩阵是一个稀疏矩阵,再进行降维处理,之后转为标准数据框格式
#我们可以去掉某些出现频次太低的词。
dtm1<- removeSparseTerms(dtm, sparse=0.6)
inspect(dtm1)
data <- as.data.frame(inspect(dtm1))

四、后续分析——层次聚类

#再之后就可以利用R语言中任何工具加以研究了,下面用层次聚类试试看
#先进行标准化处理,再生成距离矩阵,再用层次聚类
data.scale <- scale(data)
d <- dist(data.scale, method = "euclidean")
fit <- hclust(d, method="ward.D")

#绘制聚类图
#可以看到在20个文档中,489号和502号聚成一类,与其它文档区别较大。
plot(fit,main ="文件聚类分析")

聚类说明了根据词频统计,哪些文档较为相近,说明这些文档存在同质。

——————————————————————————————————————————————————————————————————————————

应用一:snowball包中的词干与记号化去哪儿?

词干化:去掉ing,s之类的词,目前适用于英文,中文不适用

SnowballStemmer(c('functions', 'stemming', 'liked', 'doing'))
[1] "function" "stem" "like" "do"

记号化:将一段文本分割成叫做token(象征)过程,token可能是单词、短语、符号或其他有意义的元素。

NGramTokenizer(' 中华人民共和国成立于1949年')
[1] "中华人民共和国成立于" "成立于1949年" "中华人民共和国成立"
[4] "成立于" "于1949年" "中华人民共和国"
[7] "成立" "于" "1949年"

snowball现在这个包已经无法加载了,tm包调用SnowballC可以词干化,函数名字叫:stemDocument;

记号化在tm包中叫做getTokenizers函数。

每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~

———————————————————————————

R语言︱文本挖掘套餐包之——XML+SnowballC+tm包的更多相关文章

  1. R语言·文本挖掘︱Rwordseg/rJava两包的安装(安到吐血)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言·文本挖掘︱Rwordseg/rJava ...

  2. R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:与前面的RsowballC分词不同的 ...

  3. R语言 文本挖掘 tm包 使用

    #清除内存空间 rm(list=ls()) #导入tm包 library(tm) library(SnowballC) #查看tm包的文档 #vignette("tm") ##1. ...

  4. R语言︱文本挖掘——jiabaR包与分词向量化的simhash算法(与word2vec简单比较)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比 ...

  5. R语言-文本挖掘

    ---恢复内容开始--- 案例1:对主席的新年致辞进行分词,绘制出词云 掌握jieba分词的用法 1.加载包 library(devtools) library(tm) library(jiebaR) ...

  6. R语言 一套内容 从入门 到放弃

    [怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0. ...

  7. R语言文本挖掘+词云显示(jiebaR包+wordcloud2包)

    利用2018年政府工作报告的例子向大家展示一下R语言如何进行文本挖掘的~用到的包有jiebaR和wordcloud2. 1.安装并加载jiebaR install.packages("jie ...

  8. R语言︱文本挖掘——词云wordcloud2包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者看到微信公众号探数寻理中提到郎大为Chif ...

  9. R语言︱缺失值处理之多重插补——mice包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:缺失值是数据清洗过程中非常重要的问题 ...

随机推荐

  1. 将Flask应用程序部署在nginx,tornado的简单方法

    来自:http://www.xuebuyuan.com/618750.html 在网上搜索了一下部署flask应用的方法,大部分是用wsgi部署在nginx上面,部署了很久,都没有成功,可能是我领悟能 ...

  2. 01_Python入门

    Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程 ...

  3. 安装 cgilib 0.5

    下载软件包下载链接:http://pan.baidu.com/s/1gdzOiVT 解包tar zxvf cgilib-0.5.tar.gzcd cgilib-0.5 makecp libcgi.a ...

  4. POJ [P3660] Cow Contest

    传递闭包经典应用 奶牛的名次能确定当且仅当在它前面的牛数+在他后面的牛数==n-1 在他前面和后面的牛数可以转化成求完传递闭包后的出度和入度 #include <iostream> #in ...

  5. ZOJ 3557 & BZOJ 2982 combination[Lucas定理]

    How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, n ...

  6. I can do it

    If it doesn't challange you ,it won't change you.

  7. Windows 定时任务对数据库进行操作

    定时对数据库进行操作可以用mysql的event事件来完成,但是只有mysql5.1后的才支持,所以有一定的局限性,也可以通过其他的mysql管理软件实现,而我发现Windows本身就有个定时任务的功 ...

  8. python学习:设计一个算法将缺失的数字找出来。

    算法题   已知整型数值 a[99], 包含的所有99个元素都是从1-100中随机取值,并且这99个数两两互不相等,也就是说从1到100这100个数字有99个在数值内,有一个缺失.请设计一个算法将缺失 ...

  9. mac下自带的Apache+PHP环境输出错误提示

    sudo vim /etc/php.ini 找到 display_errors = Off ,把Off 改为 On . 最后为 display_errors = On ; 找到 error_repor ...

  10. Python自动化--语言基础2--运算符、格式化输出、条件语句、循环语句、列表、元组

    运算符包括:算术运算符.比较运算符.赋值运算符.逻辑运算符.成员运算符.身份运算符 算术运算符 %   取模(余数) //  取相除的整数部分 /   (5/2=2.5) 比较运算符 ==  等于 ! ...