一道不难的DP题,主要是为了总结这类最优化题的思路;同时还学到了一个新操作

传送门:$>here<$

题意

给出一个长度为$N$的序列,要求最多使用s个数字进行量化(有损压缩),即代替原数字:使得量化后各个被代替的数与代替的数的差的平方之和最小。

数据范围:$n \leq 100, s \leq 10$

Solution

动态规划的常规思路

容易发现肯定选择数值相近的一些数字用一个数字取替代,所以肯定先排序。

排序完后就是一个简单的dp题了。$dp[i][j]$表示前$i$个数字,使用$j$个数字量化的最小误差。当前决策一定关于第$i$个数字有关,问题在于究竟这一段要多长。在枚举一个k,转移就很明显了:

$dp[i][j]=Min\{dp[k][j-1]+quantize(k+1,i)\}$

究竟用什么来做量化的值

问题转化为了如何求$quantize$函数。就这道题的范围来看,从最小到最大枚举也是没有问题的。但实际上有$O(1)$方法。

设我们选择$m$来量化,也就是说函数$y=\sum\limits_{i=l}^{r}(m-a[i])^2$最小。问题转化为求此函数的最小值。

这是个二次函数,所以展开后直接求导(或直接使用顶点公式),找到顶点的$x$坐标即可。

$y=\sum\limits_{i=l}^{r}(m-a[i])^2=(r-l+1)m^2-2m\sum\limits_{i=l}^{r}a[i]+\sum\limits_{i=l}^{r}a[i]^2$

当$y'=2(r-l+1)m-2\sum\limits_{i=l}^{r}a[i]=0$时

$m=\frac{\sum\limits_{i=l}^{r}a[i]}{r-l+1}$

这就是平均值!由此我们得到结论:当利用平均值来当量化值时,差的平方之和最小。

透过题解看本质

其实对于这类最优化dp问题,可以看做是递归问题。dp的本质是记忆化搜索,只不过可以利用递推来实现。当我搜到这一步时需要枚举来决策当前需要多长的一段来量化,而剩余的则不需要递归,而是直接利用之前做好的最优子结构。这就是dp为什么比dfs快了。其实dp就是暴力,它终究需要考虑所有需要且可能的情况。

my code

具体在实现的时候通过统计前缀和以及平方的前缀和来$O(1)$完成求解。注意把$m$代入求误差时也要利用前缀和。

注意平均值应该四舍五入。

/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = ; int w = ; register char c = getchar();
for(; c ^ '-' && (c < '' || c > ''); c = getchar());
if(c == '-') w = -, c = getchar();
for(; c >= '' && c <= ''; c = getchar()) x = (x<<) + (x<<) + c - ''; return x * w;
}
int T,N,s;
int a[MAXN],dp[MAXN][],sum[MAXN],ssqr[MAXN];
inline int calc(int l, int r, int m){
int res = ;
res += m*m * (r-l+);
res += ssqr[r] - ssqr[l-];
res -= *m*(sum[r]-sum[l-]);
return res;
}
inline int quantize(int l, int r){
int m = (sum[r]-sum[l-]) / (r-l+);
return Min(calc(l,r,m), calc(l,r,m+));
}
inline int Solve(){
sort(a+,a+N+);
sum[] = ssqr[] = ;
for(int i = ; i <= N; ++i){
sum[i] = sum[i-] + a[i];
ssqr[i] = ssqr[i-] + a[i] * a[i];
}
memset(dp,INF,sizeof(dp));
for(int i = ; i <= s; ++i) dp[][i] = ;
for(int i = ; i <= N; ++i){
for(int j = ; j <= s; ++j){
for(int k = ; k < i; ++k){
dp[i][j] = Min(dp[i][j], dp[k][j-] + quantize(k+,i));
}
}
}
return dp[N][s];
}
int main(){
// freopen(".in","r",stdin);
T = read();
while(T--){
N = read(), s = read();
for(int i = ; i <= N; ++i){
a[i] = read();
}
printf("%d\n", Solve());
}
return ;
}

「Algospot」量化QUANTIZE的更多相关文章

  1. 「Algospot」津巴布韦ZIMBABWE

    同时考验对状压DP和数位DP的理解: 传送门:$>here<$ 题意 给出一个数字$e$,现在对$e$通过$m$进行变换得到$x$:变换的要求是:1.只能改变原数字$e$各个数位的顺序(可 ...

  2. 「Algospot」龙曲线DRAGON

    一道考验思维的好题,顺便总结求第k大问题的常规思路: 传送门:$>here<$ 题意 给出初始串FX,每分形一次所有X替换为X+YF,所有Y替换为FX-Y.问$n$代字符串第$p$位起长度 ...

  3. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  4. 面试都在问的「微服务」「RPC」「服务治理」「下一代微服务」一文带你彻底搞懂!

    ❝ 文章每周持续更新,各位的「三连」是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) ❞ 单体式应用程序 与微服务相对的另一个概念是传统的「单体式应用程 ...

  5. 《Offer一箩筐》一份高质量「简历」撰写指南,望打扰!!

    「MoreThanJava」 宣扬的是 「学习,不止 CODE」. 如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Hi~ 这里是 ...

  6. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  7. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  8. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  9. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

随机推荐

  1. .NET redis cluster

    一.下载Windows版本Redis 下载链接:https://github.com/MSOpenTech/redis/releases(根据系统选择对应版本) 二.修改默认的配置文件 如上图两个配置 ...

  2. netty的好处

    netty作为一个高性能的异步通信框架,它到底有哪些好处了,又用到哪些基础技术呢? 1.使用ServerBootstrap 作为netty服务端的启动辅助类,并且在创建ServerBootstrap时 ...

  3. Spring Boot 自定义 starter

    一.简介 SpringBoot 最强大的功能就是把我们常用的场景抽取成了一个个starter(场景启动器),我们通过引入springboot 为我提供的这些场景启动器,我们再进行少量的配置就能使用相应 ...

  4. php去除数组中重复值,并返回结果!

    array_unique(array) 只能处理value只有单个的数组. 去除有多个value数组,可以使用如下函数实现: function more_array_unique($arr=array ...

  5. Spring MVC(三)控制器获取页面请求参数以及将控制器数据传递给页面和实现重定向的方式

    首先做好环境配置 在mvc.xml里进行配置 1.开启组件扫描 2.开启基于mvc的标注 3.配置试图处理器 <?xml version="1.0" encoding=&qu ...

  6. web开发布局---传统布局篇

    1.传统布局 盒状模型结合 display 属性.float 浮动以及 position 定位属性设计的各式传统布局形式. 2.说再多不如动手实践,下面举三个例子 html 部分代码: <sec ...

  7. 安装centos5.x的基本优化配置

    1.添加账号

  8. 图像的膨胀与腐蚀——OpenCV与C++的具体实现

    目录 1. 膨胀与腐蚀的原理 2. 膨胀的具体实现 1) OpenCV实现 2) C/C++实现 3) 验证与结果 3. 腐蚀的具体实现 1. 膨胀与腐蚀的原理 膨胀与腐蚀是数学形态学在图像处理中最基 ...

  9. STL源码剖析-vector

    STL(Standard Template Library) C++标准模板库,acm选手一定对它不陌生,除了算法,那几乎是“吃饭的家伙了”.我们使用库函数非常方便,且非常高效(相对于自己实现来说). ...

  10. sql面试 查找每个班级的前5名学生(取分类数据的前几条数据)

    关键字PARTITION BY 自己看代码喽~ SELECT * FROM ( SELECT ROW_NUMBER() OVER (PARTITION BY ClassType ORDER BY Sc ...