洛谷P3390【模板】矩阵快速幂——矩阵运算入门笔记
作为一个因为极度畏惧数学
而选择成为一名OIer的蒟蒻
终于还是迎来了要面对的这一天
一般题目中矩阵运算好像只用到矩阵乘法
(或许只是蒟蒻我做的题太少)
而且矩阵的乘法也是较难理解的一部分
所以就简单讲讲矩阵乘法
如图
矩阵A*B就是用A的每一行依次乘B的每一列
具体就是A的第i行中每一个数对应相乘B的第j列每个数
每个相乘所得结果相加
最后放置于C矩阵的第i行第j号位
所以矩阵乘法中A的列数必须等于B的行数
(虽然第一次看确实有些绕,但它用起来真的妙啊~妙啊~)
上一个矩阵A*B的代码
(这里以正方形矩阵为例)
for(ll i=1;i<=n;i++)//枚举A的每一行
for(ll j=1;j<=n;j++)//枚举B的每一列
for(ll k=1;k<=n;k++)//k既是A的列数,也是B的行数
C.a[i][j]+=A.a[i][k]*B.a[k][j];
这里运算的复杂度为O(n^3)
一般题目已经够用
有O(n^2.7)的算法太 太 太复杂
所以其实可以不用在意的啦
神奇的一点
矩阵乘法也是支持结合律的!!!
但是它不支持分配律
这是很重要的一点
因为这决定了他也同样可以快速幂
(你别告诉我不知道快速幂是什么 = = )
所以就先上一道最最基础的矩阵运算入门操作
题目传送门 啦~啦~啦~
题目描述
给定n*n的矩阵A,求A^k
输入输出格式
输入格式:
第一行,n,k
第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素
输出格式:
输出A^k
共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7
输入样例
2 1
1 1
1 1
输出样例
1 1
1 1
说明
n<=100, k<=10^12, |矩阵元素|<=1000
这次具体解释看代码注释啦~啦~啦~
(不要吐槽我的蜜汁缩进)
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
ll read()
{
ll f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return x*f;
}
void print(int x)
{
if(x<0){putchar('-');x=-x;}
if(x>9) print(x/10);
putchar(x%10+'0');
}
ll n,m;
ll ans;
const ll mod=1000000000+7;
struct node{ll a[110][110];}d;
//用结构体储存矩阵,以便调用快速幂后返回整个矩阵
node quick_pow(node f,ll k)
{
if(k==1) return f;
//若指数为1,则直接返回矩阵
else if(k%2==1)
{
//指数为奇数,返回k-1次方乘一次方
node temp=quick_pow(f,k-1);
node ans;
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
for(ll k=1;k<=n;k++)
ans.a[i][j]+=(f.a[i][k]*temp.a[k][j])%mod,ans.a[i][j]%=mod;
return ans;
}
else if(k%2==0)
{
//指数为偶数,计算矩阵的k/2次方,在返回平方
node temp=quick_pow(f,k/2);
node ans;
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
for(ll k=1;k<=n;k++)
ans.a[i][j]+=(temp.a[i][k]*temp.a[k][j])%mod,ans.a[i][j]%=mod;
return ans;
}
}
int main()
{
n=read();m=read();
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
d.a[i][j]=read();//读入初始矩阵
node ans=quick_pow(d,m);//快速幂
for(ll i=1;i<=n;i++)
{
for(ll j=1;j<=n;j++)
print(ans.a[i][j]),printf(" ");
printf("\n");
}
return 0;
}
洛谷P3390【模板】矩阵快速幂——矩阵运算入门笔记的更多相关文章
- 【洛谷P3390】矩阵快速幂
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...
- 3990 [模板]矩阵快速幂 洛谷luogu
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- 【洛谷 p3390】模板-矩阵快速幂(数论)
题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long LL; 前使用 LL. ...
- 洛谷 P1965 转圈游戏 —— 快速幂
题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂
思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1) ] [a(n-1) ] = ...
随机推荐
- Servlet&&Jsp 概述
主题 Servlet的作用 构建动态网页 Servlet代码初探 Servlet与其他技术的对比 Jsp的作用 Servlet的作用 Servlet是在web服务器或应用服务器上用来动态生成html的 ...
- OKMX6Q ffmpeg & ffserver
通过ltib在根文件系统中增加mplayer和ffmpeg后,拟使用ffmpeg从摄像头(/dev/video0)采集视频. 刚开始使用了: ffmpeg -f video4linux2 -s 320 ...
- Maven打包时去掉项目版本号
Maven打包后,jar或war文件名里带有版本号信息,如projectname0.0.1-SNAPSHOT.jar等,怎么去掉呢? 解决办法: 打开项目pom.xml文件,在<build> ...
- 利用10h号中断在dos中间显示自己名字
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- 读《你不知道的JavaScript(上卷)》后感-浅谈JavaScript作用域(一)
原文 一. 序言 最近我在读一本书:<你不知道的JavaScript>,这书分为上中卷,内容非常丰富,认真细读,能学到非常多JavaScript的知识点,希望广大的前端同胞们,也入手看看这 ...
- 2017-07-09(tar who last)
tar gzip ,bzip2对于文件目录压缩支持有限,所以出现了tar命令 tar [选项] 打包文件名 源文件 -c 打包 -v 显示过程 -f 指定打包文件名 -x 解包 -z 压缩成.ta ...
- junit源码解析--捕获测试结果
OK,前面的博客我们整理了junit运行完了所有的测试用例,那么OK了,现在开始该收集测试结果了. 在这最后一步中,junit主要是玩一个类,TestResult.这里类中封装了几个参数,在初始化这个 ...
- Linux指令--wget
Linux系统中的wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,我们经常要下载一些软件或从远程服务器恢复备份到本地服务器.wget支持HTTP,HTTPS和FTP协 ...
- Android Studio 下获取debug sha1和md5
Open Android Studio Open Your Project Click on Gradle (From Right Side Panel, you will see Gradle Ba ...
- JDBC (五)
1 使用dbutils进行一对多.多对多的开发 1.1 准备 mysql驱动的pom.xml <!-- https://mvnrepository.com/artifact/mysql/mysq ...