[LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of rectangle[[0, 1], [-2, 3]]
is 2,
and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
Credits:
Special thanks to @fujiaozhu for adding this problem and creating all test cases.
这道题给了我们一个二维数组,让求和不超过的K的最大子矩形,那么首先可以考虑使用 brute force 来解,就是遍历所有的子矩形,然后计算其和跟K比较,找出不超过K的最大值即可。就算是暴力搜索,也可以使用优化的算法,比如建立累加和,参见之前那道题 Range Sum Query 2D - Immutable,可以快速求出任何一个区间和,下面的方法就是这样的,当遍历到 (i, j) 时,计算 sum(i, j),表示矩形 (0, 0) 到 (i, j) 的和,然后遍历这个矩形中所有的子矩形,计算其和跟K相比,这样既可遍历到原矩形的所有子矩形,参见代码如下:
解法一:
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
if (matrix.empty() || matrix[].empty()) return ;
int m = matrix.size(), n = matrix[].size(), res = INT_MIN;
int sum[m][n];
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
int t = matrix[i][j];
if (i > ) t += sum[i - ][j];
if (j > ) t += sum[i][j - ];
if (i > && j > ) t -= sum[i - ][j - ];
sum[i][j] = t;
for (int r = ; r <= i; ++r) {
for (int c = ; c <= j; ++c) {
int d = sum[i][j];
if (r > ) d -= sum[r - ][j];
if (c > ) d -= sum[i][c - ];
if (r > && c > ) d += sum[r - ][c - ];
if (d <= k) res = max(res, d);
}
}
}
}
return res;
}
};
下面这个算法进一步的优化了运行时间,这个算法是基于计算二维数组中最大子矩阵和的算法,可以参见 youtube 上的这个视频。这个算法巧妙在把二维数组按行或列拆成多个一维数组,然后利用一维数组的累加和来找符合要求的数字,这里用了 lower_bound 来加快的搜索速度,也可以使用二分搜索法来替代。建立一个 TreeSet,然后开始先放个0进去,为啥要放0呢,因为要找 lower_bound(curSum - k),当 curSum 和k相等时,0就可以被返回了,这样就能更新结果了。由于对于一维数组建立了累积和,那么 sum[i,j] = sum[i] - sum[j],其中 sums[i,j] 就是目标子数组需要其和小于等于k,然后 sums[j] 是 curSum,而 sum[i] 就是要找值,当使用二分搜索法找 sum[i] 时,sum[i] 的和需要大于等于 sum[j] - k,所以也可以使用 lower_bound 来找,参见代码如下:
解法二:
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k) {
if (matrix.empty() || matrix[].empty()) return ;
int m = matrix.size(), n = matrix[].size(), res = INT_MIN;
for (int i = ; i < n; ++i) {
vector<int> sum(m);
for (int j = i; j < n; ++j) {
for (int k = ; k < m; ++k) {
sum[k] += matrix[k][j];
}
int curSum = ;
set<int> st{{}};
for (auto a : sum) {
curSum += a;
auto it = st.lower_bound(curSum - k);
if (it != st.end()) res = max(res, curSum - *it);
st.insert(curSum);
}
}
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/363
类似题目:
Range Sum Query 2D - Immutable
Maximum Size Subarray Sum Equals k
参考资料:
https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K的更多相关文章
- Leetcode: Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363. Max Sum of Rectangle No Larger Than K
/* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...
- [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...
- 【leetcode】363. Max Sum of Rectangle No Larger Than K
题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...
- 第十三周 Leetcode 363. Max Sum of Rectangle No Larger Than K(HARD)
Leetcode363 思路: 一种naive的算法就是枚举每个矩形块, 时间复杂度为O((mn)^2), 可以做少许优化时间复杂度可以降低到O(mnnlogm), 其中m为行数, n为列数. 先求出 ...
- [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
随机推荐
- SVN服务器和客户端安装教程
SVN是什么?有何用? SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁 ...
- C#生成带logo的二维码
带logo的二维码生成分为两步骤:首先根据输入的内容生成二维码图片,然后读取本地的logo图片,通过图片处理生成带logo的二维码. 生成的二维码效果如下: 下面直接贴出二维码生成类 QRCode ...
- Web API项目中使用Area对业务进行分类管理
在之前开发的很多Web API项目中,为了方便以及快速开发,往往把整个Web API的控制器放在基目录的Controllers目录中,但随着业务越来越复杂,这样Controllers目录中的文件就增加 ...
- jQuery Lightbox图片放大预览
简介:jQuery Lightbox图片放大预览代码是一款可以在用户点击页面中的小图片时,将该图片的高清版本以Lightbox的方式放大显示在页面的中间,提高用户的体验度. 效果展示 http://h ...
- 关于Net Core 多平台程序的Framework问题
关于Net Core 多平台程序的Framework问题: (本文只是推测,欢迎大家指正) 最近在研究NetCore的多平台问题,起因是有一个Winform的项目,由于跨平台的要求,想改为NetCor ...
- 简述9种社交概念 SNS究竟用来干嘛?
1.QQ 必备型交流工具基本上每一个网民最少有一个QQ,QQ已经成为网民的标配,网络生活中已经离不开QQ了.虽然大家嘴上一直在骂 QQ这个不好,那个不对,但是很少有人能彻底离开QQ.QQ属于IM软件, ...
- shell笔记
shell:俗称操作系统的"外壳",就是命令解释程序. 是用户与Linux内核之间的接口. 是负责与用户交互,分析.执行用户输入的命令,并给出结果或出错提示. ...
- Atitit.数据采集器 dataspider
Atitit.数据采集器 dataspider /atiplat_cms/src/com/attilax/WebInfoX.java @dep http://cl.cmcher.com/thread ...
- JqueryDataTable的使用(.Net平台)
上一篇随笔提到了MvcPager,最近用到了一款前端JQ插件------DataTable(简称DT),很好用. DT是一款前端插件,和后端完全分离开,就这点来看,我就特别喜欢. 一.使用DT,需要以 ...
- CartO
Carto documentation The following is a list of properties provided in CartoCSS that you can apply to ...