1.平衡树简称AVL,出名的有红黑树,这里介绍一下gb_tree的实现

gb_tree的原理比红黑树简单,没有过多的旋转跳跃闭着眼,是一种叫AA树的结构(Arne Andersson's General Balanced Trees),有兴趣看这篇论文:传送门

2.结构

{Size, Tree}  是整个结构体,Tree的定义又是 {Key, Value, Smaller, Bigger} | nil

初始化直接返回{0, nil}

3.插入

insert(Key, Val, {S, T}) when is_integer(S) ->
    S1 = S+1,
    {S1, insert_1(Key, Val, T, ?pow(S1, ?p))}.   % 给size+1,insert_1返回新的结构

 insert_1又是如何找到要插入的位置,且做平衡的?

% 由于对称性,这里讲插入左子树的情况就行
insert_1(Key, Value, {Key1, V, Smaller, Bigger}, S) when Key < Key1 ->  % 要插入的key比目前节点的key小
    case insert_1(Key, Value, Smaller, ?div2(S)) of
        % 递归,在目前节点的左子树继续查找,当Smaller为nil的时候返回下面两种情况
        % T1 就是已经更新好的左子树
	{T1, H1, S1} ->
	    T = {Key1, V, T1, Bigger},
	    {H2, S2} = count(Bigger),
	    H = ?mul2(erlang:max(H1, H2)),  %% 每层都会被调用一次
	    SS = S1 + S2 + 1,
	    P = ?pow(SS, ?p),
	    if
		H > P ->  % 满足这个条件就重新平衡
		    balance(T, SS);
		true ->
		    {T, H, SS}
	    end;
	T1 ->
	    {Key1, V, T1, Bigger}  % 结果--节点和右子树均没改变,T1改变
    end;

4.平衡

也就是上面的balance(T, SS),这里什么时候会被执行呢?看一下下面代码

%% 是的insert_1的{T1,H1, S1}分支被执行
insert_1(Key, Value, nil, S) when S =:= 0 ->
    {{Key, Value, nil, nil}, 1, 1};

看看官方的说明

也就是说 13行的H>P就是重新进行平衡的时候了,而平衡的操作也很简单,看下代码,就是按顺序填满一棵树

balance_list_1(L, S) when S > 1 ->
    Sm = S - 1,
    S2 = Sm div 2,
    S1 = Sm - S2,
    {T1, [{K, V} | L1]} = balance_list_1(L, S1),
    {T2, L2} = balance_list_1(L1, S2),
    T = {K, V, T1, T2},
    {T, L2};
balance_list_1([{Key, Val} | L], 1) ->
    {{Key, Val, nil, nil}, L};
balance_list_1(L, 0) ->
    {nil, L}.

5.删除

删除比插入是更简单了,找到对应的结点,然后从结点的右子树里找到一个最小的代替当前的点

delete_1(Key, {Key1, Value, Smaller, Larger}) when Key < Key1 ->
    Smaller1 = delete_1(Key, Smaller),
    {Key1, Value, Smaller1, Larger};
delete_1(Key, {Key1, Value, Smaller, Bigger}) when Key > Key1 ->
    Bigger1 = delete_1(Key, Bigger),
    {Key1, Value, Smaller, Bigger1};
delete_1(_, {_, _, Smaller, Larger}) ->
    merge(Smaller, Larger).

merge(Smaller, nil) ->
    Smaller;
merge(nil, Larger) ->
    Larger;
merge(Smaller, Larger) ->
    {Key, Value, Larger1} = take_smallest1(Larger),
    {Key, Value, Smaller, Larger1}.

可以看到整棵树没有旋转等复杂操作,但是仍是一个效率比lists高的二叉树

gb_tree平衡树源码的更多相关文章

  1. LevelDB源码剖析

    LevelDB的公共部件并不复杂,但为了更好的理解其各个核心模块的实现,此处挑几个关键的部件先行备忘. Arena(内存领地) Arena类用于内存管理,其存在的价值在于: 提高程序性能,减少Heap ...

  2. 死磕 java集合之TreeMap源码分析(二)- 内含红黑树分析全过程

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 插入元素 插入元素,如果元素在树中存在,则替换value:如果元素不存在,则插入到对应的位置, ...

  3. Java - TreeMap源码解析 + 红黑树

    Java提高篇(二七)-----TreeMap TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap ...

  4. 源码速读及点睛:HashMap

    Java 8 HashMap的分离链表 从Java 2到Java 1.7,HashMap在分离链表上的改变并不多,他们的算法基本上是相同的.如果我们假设对象的Hash值服从平均分布,那么获取一个对象需 ...

  5. 【转】【java源码分析】Map中的hash算法分析

    全网把Map中的hash()分析的最透彻的文章,别无二家. 2018年05月09日 09:08:08 阅读数:957 你知道HashMap中hash方法的具体实现吗?你知道HashTable.Conc ...

  6. JDK部分源码阅读与理解

    本文为博主原创,允许转载,但请声明原文地址:http://www.coselding.cn/article/2016/05/31/JDK部分源码阅读与理解/ 不喜欢重复造轮子,不喜欢贴各种东西.JDK ...

  7. 跟着大彬读源码 - Redis 9 - 对象编码之 三种list

    目录 1 ziplist 2 skiplist 3 quicklist 总结 Redis 底层使用了 ziplist.skiplist 和 quicklist 三种 list 结构来实现相关对象.顾名 ...

  8. Java源码解析|HashMap的前世今生

    HashMap的前世今生 Java8在Java7的基础上,做了一些改进和优化. 底层数据结构和实现方法上,HashMap几乎重写了一套 所有的集合都新增了函数式的方法,比如说forEach,也新增了很 ...

  9. Redis学习之zskiplist跳跃表源码分析

    跳跃表的定义 跳跃表是一种有序数据结构,它通过在每个结点中维持多个指向其他结点的指针,从而达到快速访问其他结点的目的 跳跃表的结构 关于跳跃表的学习请参考:https://www.jianshu.co ...

随机推荐

  1. 385cc412a70eb9c6578a82ac58fce14c md5破解

    在线破解很方便,你可能几秒钟就可以破解得到MD5原码...但是在线破解也不是万能的 也有查不到的或者需要收费的(土豪略过这句话)...下面推荐个网站md5.geekzh.com 所有MD5免费查询 E ...

  2. hdu_1286找新朋友(欧拉定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286 找新朋友 Time Limit: 2000/1000 MS (Java/Others)    M ...

  3. Ugly Numbers(STL应用)

    题目链接:http://poj.org/problem?id=1338 Ugly Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  4. java初学

    1.Scanner类 1)使用 a.导入Scanner类 improt java.util.Scanner; b.创建Scanner对象 Scanner input = new Scanner(Sys ...

  5. flume1.8 开发指南学习感悟

    概述: Apache Flume是一个分布式.可用的系统,用于从许多不同的sources有效的收集并移动大量日志数据用于集中存储数据. 架构及数据流动模型: flume实际上就是一个Agent.Age ...

  6. java中的分支结构 switch case的使用

    switch(A),括号中A的取值只能是整型或者可以转换为整型的数值类型,比如byte.short.int.char.string(jdk1.7后加入)还有枚举:需要强调的是:long是不能用在swi ...

  7. Web前端:如何实现选择select下拉框选中跳转其他页面

    <select onchange="window.location=this.value;"><option value="a.html"&g ...

  8. linux常用命令(CentOS)

    1.目录切换命令 linux目录结构 ps:绿色标注为常用命令 cd xx 切换到该目录下的xx目录 cd ../ 切换到上一层目录 cd / 切换到系统根目录 cd ~ 切换到用户主目录 cd - ...

  9. Mysql Index extends优化

    Innodb通过自动把主键列添加到每个二级索引来扩展它们: CREATE TABLE t1 ( i1 , i2 , d DATE DEFAULT NULL, PRIMARY KEY (i1, i2), ...

  10. Select、Poll、Epoll、 异步IO 介绍

    一.概念相关介绍 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案是不同的.所以先限定一下本文的上下文. 本文讨论的背景是Linux环境下的net ...