用keras实现人脸关键点检测(2)
上一个代码只能实现小数据的读取与训练,在大数据训练的情况下。会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进。
用keras实现人脸关键点检测
数据集:https://pan.baidu.com/s/1cnAxJJmN9nQUVYj8w0WocA
第一步:准备好需要的库
- tensorflow 1.4.0
- h5py 2.7.0
- hdf5 1.8.15.1
- Keras 2.0.8
- opencv-python 3.3.0
- numpy 1.13.3+mkl
第二步:准备数据集:
我对每一张图像进行了剪裁,使图像的大小为178*178的正方形。

并且对于原有的lable进行了优化
第三步:将图片和标签转成numpy array格式:
参数
trainpath = 'E:/pycode/facial-keypoints-master/data/50000train/' testpath = 'E:/pycode/facial-keypoints-master/data/50000test/' imgsize = 178 train_samples =40000 test_samples = 200 batch_size = 32
def __data_label__(path):
f = open(path + "lable-40.txt", "r")
j = 0
i = -1
datalist = []
labellist = []
while True:
for line in f.readlines():
i += 1
j += 1
a = line.replace("\n", "")
b = a.split(",")
lable = b[1:]
# print(b[1:])
#对标签进行归一化(不归一化也行)
# for num in b[1:]:
# lab = int(num) / 255.0
# labellist.append(lab)
# lab = labellist[i * 10:j * 10]
imgname = path + b[0]
images = load_img(imgname)
images = img_to_array(images).astype('float32')
# 对图片进行归一化(不归一化也行)
# images /= 255.0
image = np.expand_dims(images, axis=0)
lables = np.array(lable)
# lable =keras.utils.np_utils.to_categorical(lable)
# lable = np.expand_dims(lable, axis=0)
lable = lables.reshape(1, 10)
#这里使用了生成器
yield (image,lable)
第四步:搭建网络:
这里使用非常简单的网络
def __CNN__(self):
model = Sequential()#178*178*3
model.add(Conv2D(32, (3, 3), input_shape=(imgsize, imgsize, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
return model
#因为是回归问题,抛弃了softmax
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 176, 176, 32) 896
_________________________________________________________________
activation_1 (Activation) (None, 176, 176, 32) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 88, 88, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 86, 86, 32) 9248
_________________________________________________________________
activation_2 (Activation) (None, 86, 86, 32) 0
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 43, 43, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 41, 41, 64) 18496
_________________________________________________________________
activation_3 (Activation) (None, 41, 41, 64) 0
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 20, 20, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 25600) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 1638464
_________________________________________________________________
activation_4 (Activation) (None, 64) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 650
=================================================================
Total params: 1,667,754
Trainable params: 1,667,754
Non-trainable params: 0
_________________________________________________________________
第五步:训练网络:
def train(model):
# print(lable.shape)
model.compile(loss='mse', optimizer='adam')
# optimizer = SGD(lr=0.03, momentum=0.9, nesterov=True)
# model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
epoch_num = 14
learning_rate = np.linspace(0.03, 0.01, epoch_num)
change_lr = LearningRateScheduler(lambda epoch: float(learning_rate[epoch]))
early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='auto')
check_point = ModelCheckpoint('CNN_model_final.h5', monitor='val_loss', verbose=0, save_best_only=True,
save_weights_only=False, mode='auto', period=1)
model.fit_generator(__data_label__(trainpath),callbacks=[check_point,early_stop,change_lr],samples_per_epoch=int(train_samples // batch_size),
epochs=epoch_num,validation_steps = int(test_samples // batch_size),validation_data=__data_label__(testpath))
# model.fit(traindata, trainlabel, batch_size=32, epochs=50,
# validation_data=(testdata, testlabel))
model.evaluate_generator(__data_label__(testpath),steps=10)
def save(model, file_path=FILE_PATH):
print('Model Saved.')
model.save_weights(file_path)
def predict(model,image):
# 预测样本分类
image = cv2.resize(image, (imgsize, imgsize))
image.astype('float32')
image /= 255
#归一化
result = model.predict(image)
result = result*1000+20
print(result)
return result
使用了fit_generator这一方法,加入了learning_rate,LearningRateScheduler,early_stop等参数。
第六步:图像验证
import tes_main
from keras.preprocessing.image import load_img, img_to_array
import numpy as np
import cv2
FILE_PATH = 'E:\\pycode\\facial-keypoints-master\\code\\CNN_model_final.h5'
imgsize =178
def point(img,x, y):
cv2.circle(img, (x, y), 1, (0, 0, 255), 10)
Model = tes_main.Model()
model = Model.__CNN__()
Model.load(model,FILE_PATH)
img = []
# path = "D:\\Users\\a\\Pictures\\face_landmark_data\data\\test\\000803.jpg"
path = "E:\pycode\\facial-keypoints-master\data\\50000test\\049971.jpg"
# image = load_img(path)
# img.append(img_to_array(image))
# img_data = np.array(img)
imgs = cv2.imread(path)
# img_datas = np.reshape(imgs,(imgsize, imgsize,3))
image = cv2.resize(imgs, (imgsize, imgsize))
rects = Model.predict(model,imgs)
for x, y, w, h, a,b,c,d,e,f in rects:
point(image,x,y)
point(image,w, h)
point(image,a,b)
point(image,c,d)
point(image,e,f)
cv2.imshow('img', image)
cv2.waitKey(0)
cv2.destroyAllWindows()




完整代码如下
from tensorflow.contrib.keras.api.keras.preprocessing.image import ImageDataGenerator,img_to_array
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Conv2D, MaxPooling2D,ZeroPadding2D
from keras.preprocessing.image import load_img, img_to_array
from keras.optimizers import SGD
import numpy as np
import cv2
from keras.callbacks import *
import keras
FILE_PATH = 'E:\\pycode\\facial-keypoints-master\\code\\CNN_model_final.h5'
trainpath = 'E:/pycode/facial-keypoints-master/data/50000train/'
testpath = 'E:/pycode/facial-keypoints-master/data/50000test/'
imgsize = 178
train_samples =40000
test_samples = 200
batch_size = 32
def __data_label__(path):
f = open(path + "lable-40.txt", "r")
j = 0
i = -1
datalist = []
labellist = []
while True:
for line in f.readlines():
i += 1
j += 1
a = line.replace("\n", "")
b = a.split(",")
lable = b[1:]
# print(b[1:])
#对标签进行归一化(不归一化也行)
# for num in b[1:]:
# lab = int(num) / 255.0
# labellist.append(lab)
# lab = labellist[i * 10:j * 10]
imgname = path + b[0]
images = load_img(imgname)
images = img_to_array(images).astype('float32')
# 对图片进行归一化(不归一化也行)
# images /= 255.0
image = np.expand_dims(images, axis=0)
lables = np.array(lable)
# lable =keras.utils.np_utils.to_categorical(lable)
# lable = np.expand_dims(lable, axis=0)
lable = lables.reshape(1, 10)
yield (image,lable)
###############:
# 开始建立CNN模型
###############
# 生成一个model
class Model(object):
def __CNN__(self):
model = Sequential()#218*178*3
model.add(Conv2D(32, (3, 3), input_shape=(imgsize, imgsize, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.summary()
return model
def train(self,model):
# print(lable.shape)
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
# optimizer = SGD(lr=0.03, momentum=0.9, nesterov=True)
# model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
epoch_num = 10
learning_rate = np.linspace(0.03, 0.01, epoch_num)
change_lr = LearningRateScheduler(lambda epoch: float(learning_rate[epoch]))
early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='auto')
check_point = ModelCheckpoint('CNN_model_final.h5', monitor='val_loss', verbose=0, save_best_only=True,
save_weights_only=False, mode='auto', period=1)
model.fit_generator(__data_label__(trainpath),callbacks=[check_point,early_stop,change_lr],samples_per_epoch=int(train_samples // batch_size),
epochs=epoch_num,validation_steps = int(test_samples // batch_size),validation_data=__data_label__(testpath))
# model.fit(traindata, trainlabel, batch_size=32, epochs=50,
# validation_data=(testdata, testlabel))
model.evaluate_generator(__data_label__(testpath))
def save(self,model, file_path=FILE_PATH):
print('Model Saved.')
model.save_weights(file_path)
def load(self,model, file_path=FILE_PATH):
print('Model Loaded.')
model.load_weights(file_path)
def predict(self,model,image):
# 预测样本分类
print(image.shape)
image = cv2.resize(image, (imgsize, imgsize))
image.astype('float32')
image = np.expand_dims(image, axis=0)
#归一化
result = model.predict(image)
print(result)
return result
用keras实现人脸关键点检测(2)的更多相关文章
- keras实现简单CNN人脸关键点检测
用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow 1.4.0 h5py ...
- dlib人脸关键点检测的模型分析与压缩
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...
- 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)
1.dlib.get_frontal_face_detector() # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...
- OpenCV实战:人脸关键点检测(FaceMark)
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 ...
- OpenCV Facial Landmark Detection 人脸关键点检测
Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4 ...
- Opencv与dlib联合进行人脸关键点检测与识别
前言 依赖库:opencv 2.4.9 /dlib 19.0/libfacedetection 本篇不记录如何配置,重点在实现上.使用libfacedetection实现人脸区域检测,联合dlib标记 ...
- opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...
- Facial landmark detection - 人脸关键点检测
Facial landmark detection (Facial keypoints detection) OpenSourceLibrary: DLib Project Home: http: ...
- 级联MobileNet-V2实现CelebA人脸关键点检测(转)
https://blog.csdn.net/u011995719/article/details/79435615
随机推荐
- [转]用python 10min手写一个简易的实时内存监控系统
简易的内存监控系统 本文需要有一定的python和前端基础,如果没基础的,请关注我后续的基础教程系列博客 文章github源地址,还可以看到具体的代码,喜欢请在原链接右上角加个star 腾讯视频链接 ...
- (译) JSON-RPC 2.0 规范(中文版)
http://wiki.geekdream.com/Specification/json-rpc_2.0.html 起源时间: 2010-03-26(基于2009-05-24版本) 更新: 2013- ...
- centos安装nginx(针对一哥们的博客进行的详细补充(用红色字体标出了补充部分))
centos安装nginx 原文地址:http://www.cnblogs.com/leechenxiang/p/5402960.html 一.什么是nginx 是一个C语言开发的HTTP反向代理服务 ...
- Golang 交叉编译 window/linux 文件
gox - 一款简单的交叉编译工具 下载地址:https://github.com/mitchellh/gox 使用 go get 命令安装: go get github.com/mitchellh/ ...
- Django rest framework(6)----序列化
目录 Django rest framework(1)----认证 Django rest framework(2)----权限 Django rest framework(3)----节流 Djan ...
- 并发编程(十):AQS
AQS全称为AbstractQueuedSynchronizer,是并发容器中的同步器,AQS是J.U.C的核心,它是抽象的队列式的同步器,AQS定义了一套多线程访问共享资源的同步器框架,许多同步类都 ...
- Python_生成大量随机信息
#coding=utf-8 import random import string import codecs ''' 演示如何使用Python标准库random来生成随机数据,这在需要 ''' #常 ...
- token 防止csrf
转自:ttps://www.ibm.com/developerworks/cn/web/1102_niugang_csrf/#icomments 当前防御 CSRF 的几种策略 验证 HTTP Ref ...
- 如何用Redis做LRU-Cache
LRU(Least Recently Used)最近最少使用算法是众多置换算法中的一种. Redis中有一个maxmemory概念,主要是为了将使用的内存限定在一个固定的大小.Redis用到的LRU ...
- HTTP多线程下载+断点续传(libcurl库)
目录索引: 一.LibCurl基本编程框架 二.一些基本的函数 三.curl_easy_setopt函数部分选项介绍 四.curl_easy_perform 函数说明(error 状态码) 五.lib ...