介绍:

在计算机科学中,AVL树是最先发明的自平衡二叉查找树。

在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。

查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 “An algorithm for the organization of information” 中发表了它。

特点:

AVL树本质上还是一棵二叉搜索树,它的特点是:

1.本身首先是一棵二叉搜索树。

2.带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。

节点数:

高度为 h 的 AVL 树,节点数 N 最多2^h − 1; 最少N(h)=N(h− 1) +N(h− 2) + 1。

最少节点数n 如以斐波那契数列可以用数学归纳法证明:

即:

N(0) = 0 (表示 AVL Tree 高度为0的节点总数)

N(1) = 1 (表示 AVL Tree 高度为1的节点总数)

N(2) = 2 (表示 AVL Tree 高度为2的节点总数)

N(h)=N(h− 1) +N(h− 2) + 1 (表示 AVL Tree 高度为h的节点总数)

节点的平衡因子是它的左子树的高度减去它的右子树的高度。带有平衡因子 1、0 或 -1 的节点被认为是平衡的。带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

操作:

假设由于在二叉排序树上插入结点而失去平衡的最小子树根结点的指针为a(即a是离插入点最近,且平衡因子绝对值超过1的祖先结点),

则失去平衡后进行进行的规律可归纳为下列四种情况:

单向右旋平衡处理LL:

由于在*a的左子树根结点的左子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行一次右旋转操作;

单向左旋平衡处理RR:

由于在*a的右子树根结点的右子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行一次左旋转操作;

双向旋转(先左后右)平衡处理LR:

由于在*a的左子树根结点的右子树上插入结点,*a的平衡因子由1增至2,致使以*a为根的子树失去平衡,则需进行两次旋转(先左旋后右旋)操作。

双向旋转(先右后左)平衡处理RL:

由于在*a的右子树根结点的左子树上插入结点,*a的平衡因子由-1变为-2,致使以*a为根的子树失去平衡,则需进行两次旋转(先右旋后左旋)操作。

图解二叉树的操作:

1.左旋

2.右旋:

avl的插入操作:(邪恶脸)

1.单方向:

以节点5为基准进行右旋:

总结:

对于这种一个方向的,只需要一次操作,这是孩子都在左边的情况,对于孩子都在右边的情况,(5,8,10),以5为基准,进行一次左旋

2.双方向:

不是一个方向,进行两次操作,先转化为1的情况,再次旋转 ,显示3为基准,左旋,5为基准右旋,先左后右边

总结:

对于这种不一个方向的情况,需要两次操作,先转化为1的情况,对称的情况是先右后左。

删除操作:

从AVL树中删除可以通过把要删除的节点向下旋转成一个叶子节点,接着直接剪除这个叶子节点来完成。因为在旋转成叶子节点期间最多有 log n个节点被旋转,而每次 AVL 旋转耗费恒定的时间,删除处理在整体上耗费 O(log n) 时间。

查找:

在AVL树中查找同在一般BST完全一样的进行,所以耗费 O(log n) 时间,因为AVL树总是保持平衡的。不需要特殊的准备,树的结构不会由于查询而改变。(这是与伸展树查找相对立的,它会因为查找而变更树结构。)

时间复杂度分析:

在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n。比如下面两个二叉树:

深度为n的二叉树

深度为log(n)的二叉树

分析:

二叉搜索树的深度越小,那么搜索所需要的运算时间越小。一个深度为log(n)的二叉搜索树,搜索算法的时间复杂度也是log(n)。然而,我们在二叉搜索树中已经实现的插入和删除操作并不能让保持log(n)的深度。如果我们按照8,7,6,5,4,3,2,1的顺序插入节点,那么就是一个深度为n的二叉树。那么,搜索算法的时间复杂度为n。

我的微信二维码如下,欢迎交流讨论

欢迎关注《IT面试题汇总》微信订阅号。每天推送经典面试题和面试心得技巧,都是干货!

微信订阅号二维码如下:

参考

http://baike.baidu.com/view/671745.htm

http://www.cnblogs.com/vamei/archive/2013/03/21/2964092.html

数据结构-自平衡二叉查找树(AVL)详解的更多相关文章

  1. 006-数据结构-树形结构-二叉树、二叉查找树、平衡二叉查找树-AVL树

    一.概述 树其实就是不包含回路的连通无向图.树其实是范畴更广的图的特例. 树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合. 1.1.树的特性: 每个结点有零个或多个子 ...

  2. 【查找结构3】平衡二叉查找树 [AVL]

    在上一个专题中,我们在谈论二叉查找树的效率的时候.不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这 ...

  3. 平衡二叉查找树 AVL 的实现

    不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (A ...

  4. (7)Java数据结构--集合map,set,list详解

    MAP,SET,LIST,等JAVA中集合解析(了解) - clam_clam的专栏 - CSDN博---有颜色, http://blog.csdn.net/clam_clam/article/det ...

  5. 面试题:什么叫平衡二叉查找树--AVL树

    查找.插入和删除在平均和最坏情况下都是O(log n) 增加和删除可能需要通过一次或多次树旋转来重新平衡这个树 节点的平衡因子是它的左子树的高度减去它的右子树的高度.带有平衡因子 1.0 或 -1 的 ...

  6. 数据结构31:树(Tree)详解

    复制广义表数据结构中的树 树是数据结构中比较重要也是比较难理解的一类存储结构.本章主要主要围绕二叉树,对树的存储以及遍历做详细的介绍,同时还会涉及到有关树的实际应用,例如构建哈弗曼编码等. 由于树存储 ...

  7. Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操 ...

  8. Python实现的数据结构与算法之快速排序详解

    一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left( ...

  9. Python实现的数据结构与算法之链表详解

    一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循 ...

随机推荐

  1. 利用create-react-app结合react-redux、react-router4构建单页应用

    1.创建项目: a.全局安装create-react-app: npm  install  create-react-app  -g b.执行create-react-app  my-projectN ...

  2. public、protected、default、private区别

    public.protected.default.private: 修饰符 本类 同包 子类 其他 public √ √ √ √ protected √ √ √ × default √ √ × × p ...

  3. 聊聊jstack的工作原理

    实现一个jstack 在聊Jstack得工作原理前呢,不如让我们先写一个简单的jstack玩玩.不用怕,很简单的,就几行代码的事,看: public class MyJstack { public s ...

  4. Python3 编程第一步

    现在,我们能使用Python完成比 2+2 更复杂的工作.在下例里,我们能写出一个初步的斐波纳契数列如下: >>> # Fibonacci series: 斐波纳契数列 ... # ...

  5. Rails中rspec测试xxx_path调用失败的解决

    首先要想生成类似于home_path,about_path之类的方法,必须在路由文件中添加对应方法: match '/help',to:"static_pages#help",vi ...

  6. 纪念 参与GitHub上第一个组织

    颇为起伏的一天. 今天大连的风, 甚是喧嚣. 不过,很高兴,小项目被fork了,也成功成为了一个开源贡献者. https://github.com/HostsTools 组织 上的那个Windows- ...

  7. 给PLSQL插上飞翔的翅膀-PLSQL优化

    60-80% of database performance issues are related to poorly performing SQL,60-80%的数据库性能问题要归结于生产中糟糕的S ...

  8. 计算机网络之万维网WWW

    万维网 WWW (World Wide Web)并非某种特殊的计算机网络,而是一个大规模的.联机式的信息储藏所. 万维网用链接的方法能非常方便地从因特网上的一个站点访问另一个站点,从而主动地按需获取丰 ...

  9. linux TCP数据包封装在SKB的过程分析

    在linux中 tcp的数据包的封装是在函数tcp_sendmsg开始的,在函数tcp_sendmsg中用到skb = sk_stream_alloc_skb(sk, select_size(sk, ...

  10. Swift类中如何创建一个对外只读对内可读写的属性

    很简单用private修饰符,后面跟限制关键字set: class Day{ private(set) var rawValue:Int = 0 func showRawValue(){ print( ...