题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

输入输出格式

输入格式:

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

输出格式:

输出最小费用

输入输出样例

输入样例#1:

5 4
3
4
2
1
4
输出样例#1:

1
dp方程:
f[i]=f[j]+(i-j-1+s[i]-s[j]-l)^2
=>f[j]+((i+s[i]-1-l)-(j+s[j]))^2
=>f[j]+(i+s[i]-1-l)^2+(j+s[j])^2-2(i+s[i]-1-l)*(j+s[j])
然后就可以斜率优化 对于i,j比k优时有:j>=k
f[j]+(i+s[i]-1-l)^2+(j+s[j])^2-2(i+s[i]-1-l)*(j+s[j])
<=f[k]+(i+s[i]-1-l)^2+(k+s[k])^2-2(i+s[i]-1-l)*(k+s[k])
=>(f[j]+(j+s[j])^2-f[k]-(k+s[k])^2)/2*(j+s[j]-k-s[k])<=(i+s[i]-1-l) 公式只有右边与i有关,考虑用单调队列,令
yj=f[j]+(j+s[j])^2,xj=(j+s[j])
原式=>(yj-yk)/(xj-xk)<=(i+s[i]-1-l)
令g[k,j]=原式 首先,不等式成立说明j优于k,由于右边单调递增,所以j以后都优于k,丢掉k
其次,k<j<i&&g[j,i]<g[k,j]则j可以丢掉
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol l,n,sum[];
int head,tail;
lol s[],f[];
lol X(lol x)
{
lol fm=x+sum[x];
return *fm;
}
lol Y(lol x)
{
lol fz=f[x]+(x+sum[x])*(x+sum[x]);
return fz;
}
int main()
{lol i;
cin>>n>>l;
for (i=;i<=n;i++)
{
scanf("%lld",&sum[i]);
sum[i]+=sum[i-];
}
head=;tail=;
s[]=;
for (i=;i<=n;i++)
{lol j=;
while (head+<=tail&&(X(s[head+])-X(s[head]))*(i+sum[i]-l-)>=Y(s[head+])-Y(s[head])) head++;
j=s[head];
//cout<<head<<' '<<tail<<endl;
f[i]=f[j]+(i-j-+sum[i]-sum[j]-l)*(i-j-+sum[i]-sum[j]-l);
while (tail->=head&&(Y(s[tail])-Y(s[tail-]))*(X(i)-X(s[tail]))>=(X(s[tail])-X(s[tail-]))*(Y(i)-Y(s[tail]))) tail--;
tail++;
s[tail]=i;
//cout<<j<<endl;
}
cout<<f[n];
}

[HNOI2008]玩具装箱TOY的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 【bzoj1010】[HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9281  Solved: 3719[Submit][St ...

  4. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  5. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  8. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  9. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  10. cogs 1330 [HNOI2008]玩具装箱toy

    cogs 1330 [HNOI2008]玩具装箱toy 瞎扯,急忙AC的请跳过 感觉数据结构写的太多了有点晕=+ 发现还没学斜率优化+- 于是来学一学QwQ 上次这题打了个决策优化直接水过了..理论O ...

随机推荐

  1. Java的HelloWorld程序

    Java的HelloWorld程序 1.新建文本文档,编写HelloWorld程序,最后保存时记得保存成.java格式 2.在D盘新建一个HelloJava文件夹用于保存java程序 3.使用WIN+ ...

  2. python 一致性哈希 分布式

    hash_ring # -*- coding: utf-8 -*- """ hash_ring ~~~~~~~~~~~~~~ Implements consistent ...

  3. Python实现栈

    栈的操作 Stack() 创建一个新的空栈 push(item) 添加一个新的元素item到栈顶 pop() 弹出栈顶元素 peek() 返回栈顶元素 is_empty() 判断栈是否为空 size( ...

  4. 团队作业4——第一次项目冲刺(Alpha版本)2017.11.19

    第三次会议:2017-11-16 第二次会议讨论的还没有完全实现,于是在第三次会议上对此进行了一些对我们工作上的看法,得出结论:多花时间啊!!!! 又没照照片图: 会议主要内容: 1.登录注册完善 2 ...

  5. CPP 栈 示例

    #include<iostream> #include<stdlib.h> using namespace std; typedef struct node { int dat ...

  6. 项目Beta冲刺Day2

    项目进展 李明皇 今天解决的进度 优化了信息详情页的布局:日期显示,添加举报按钮等 优化了程序的数据传递逻辑 明天安排 程序运行逻辑的完善 林翔 今天解决的进度 实现微信端消息发布的插入数据库 明天安 ...

  7. c# windows service 实现监控其他程序是否被关闭,关闭则报警

    namespace MonitorService { public partial class MonitorSv : ServiceBase { string AppName = "&qu ...

  8. 什么是KMP算法?KMP算法推导

    花了大概3天时间,了解,理解,推理KMP算法,这里做一次总结!希望能给看到的人带来帮助!! 1.什么是KMP算法? 在主串Str中查找模式串Pattern的方法中,有一种方式叫KMP算法 KMP算法是 ...

  9. jquery ajax file upload NET MVC 无刷新文件上传

    网上有各种各样的文件上传方法,有基于JS框架的.也有基于flash swf插件的. 这次分享一个比较简单而且实用能快速上手的文件上传方法,主要步骤: 1.引用Jquery包,我用的是jquery-1. ...

  10. Python内置函数(27)——range

    英文文档: range(stop) range(start, stop[, step]) Rather than being a function, range is actually an immu ...