[HNOI2008]玩具装箱TOY
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
5 4
3
4
2
1
4
1
dp方程:
f[i]=f[j]+(i-j-1+s[i]-s[j]-l)^2
=>f[j]+((i+s[i]-1-l)-(j+s[j]))^2
=>f[j]+(i+s[i]-1-l)^2+(j+s[j])^2-2(i+s[i]-1-l)*(j+s[j])
然后就可以斜率优化 对于i,j比k优时有:j>=k
f[j]+(i+s[i]-1-l)^2+(j+s[j])^2-2(i+s[i]-1-l)*(j+s[j])
<=f[k]+(i+s[i]-1-l)^2+(k+s[k])^2-2(i+s[i]-1-l)*(k+s[k])
=>(f[j]+(j+s[j])^2-f[k]-(k+s[k])^2)/2*(j+s[j]-k-s[k])<=(i+s[i]-1-l) 公式只有右边与i有关,考虑用单调队列,令
yj=f[j]+(j+s[j])^2,xj=(j+s[j])
原式=>(yj-yk)/(xj-xk)<=(i+s[i]-1-l)
令g[k,j]=原式 首先,不等式成立说明j优于k,由于右边单调递增,所以j以后都优于k,丢掉k
其次,k<j<i&&g[j,i]<g[k,j]则j可以丢掉
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol l,n,sum[];
int head,tail;
lol s[],f[];
lol X(lol x)
{
lol fm=x+sum[x];
return *fm;
}
lol Y(lol x)
{
lol fz=f[x]+(x+sum[x])*(x+sum[x]);
return fz;
}
int main()
{lol i;
cin>>n>>l;
for (i=;i<=n;i++)
{
scanf("%lld",&sum[i]);
sum[i]+=sum[i-];
}
head=;tail=;
s[]=;
for (i=;i<=n;i++)
{lol j=;
while (head+<=tail&&(X(s[head+])-X(s[head]))*(i+sum[i]-l-)>=Y(s[head+])-Y(s[head])) head++;
j=s[head];
//cout<<head<<' '<<tail<<endl;
f[i]=f[j]+(i-j-+sum[i]-sum[j]-l)*(i-j-+sum[i]-sum[j]-l);
while (tail->=head&&(Y(s[tail])-Y(s[tail-]))*(X(i)-X(s[tail]))>=(X(s[tail])-X(s[tail-]))*(Y(i)-Y(s[tail]))) tail--;
tail++;
s[tail]=i;
//cout<<j<<endl;
}
cout<<f[n];
}
[HNOI2008]玩具装箱TOY的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【bzoj1010】[HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9281 Solved: 3719[Submit][St ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- BZOJ 1010 [HNOI2008]玩具装箱toy
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7184 Solved: 2724[Submit][St ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
- cogs 1330 [HNOI2008]玩具装箱toy
cogs 1330 [HNOI2008]玩具装箱toy 瞎扯,急忙AC的请跳过 感觉数据结构写的太多了有点晕=+ 发现还没学斜率优化+- 于是来学一学QwQ 上次这题打了个决策优化直接水过了..理论O ...
随机推荐
- c语音-第零次作业
1.你认为大学的学习生活.同学关系.师生应该是怎样? 我认为大学学习应该以自我学习为主,由以往的被动学习改为主动学习,探索新世界,除学习专业知识外对自身欠缺的地方也应该加以补足:同学之间要互相帮助,更 ...
- scrapy csvfeed spider
class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...
- HTTP协议中PUT和POST使用区别
有的观点认为,应该用POST来创建一个资源,用PUT来更新一个资源:有的观点认为,应该用PUT来创建一个资源,用POST来更新一个资源:还有的观点认为可以用PUT和POST中任何一个来做创 ...
- Tomcat 8项目无法启动,无报错
作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs Tomcat 8启动很慢,且日志上无任何错误,在日志中查看到如下信息: Log4j:[2015-10-29 ...
- 自己动手写CPU(基于FPGA与Verilog)
大三上学期开展了数字系统设计的课程,下学期便要求自己写一个单周期CPU和一个多周期CPU,既然要学,就记录一下学习的过程. CPU--中央处理器,顾名思义,是计算机中最重要的一部分,功能就是周而复始地 ...
- python之路--day15---软件开发目录规范
软件开发目录规范 bin--启动文件 conf--配置文件 core--核心代码 db--数据文件 lib--常用功能代码 log--日志文件 readme--软件介绍
- JAVA_SE基础——4.path的临时配置&Classpath的配置
这次,我来写下关于path的临时配置的心的 我来说个有可能的实例:如果你去到别人的电脑 又想写代码 又不想改乱别人的path配置的话 再说别人愿意你在别人的电脑上瞎配吗? 那该怎么办呢? 那没问题 ...
- python的模块和包
==模块== python语言的组织结构层次: 包->模块->代码文件->类->函数->代码块 什么是模块呢 可以把模块理解为一个代码文件的封装,这是比类更高一级的封装层 ...
- Mego开发文档 - 建模高级主题
建模高级主题 在建模过程中我们还有许多其他情况,这里列出本框架中的有用特性来用于解决此类问题. 函数映射 我们可以将指定的CLR函数映射到数据库中的系统函数或自定义函数,该特性用于补充框架中未提供的数 ...
- GIT入门笔记(10)- 多种撤销修改场景和对策
场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...