Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 4095    Accepted Submission(s): 1008

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

307
7489
/*
hdu 4578 线段树(标记处理) 给你n个初始化为0的数进行以下操作:
1 x y c 给[x,y]上的数全加上c add
2 x y c 给[x,y]上的数全乘上c mult
3 x y c 将[x,y]上面的数全置为c same
4 x y c 查询[x,y]上所有数的c次方的和,然后对10007取模 首先我们可以发现 加法和乘法都无法直接维护我们想要的到的立方和,但对于same而言
sum = (r-l+1)*(tree[i].same^p).
如果每次查询我们都查找到单点,有极大的可能TLE。所以考虑查询的时候直接查找same标记,而且p也很小。
然后就是如何处理add,mult,same这三个标记的冲突.
就是same而言,更新到一个区间,那么先前这个区间上的所有标记都会作废
对于add和mult很明显会冲突,到后面你并不能知道是先处理add还是mult.所以
add和mult不能同时共处一个区间,而且先前到达的标记要先更新下去. 于是对于add和mult分3种情况: //就add而言
1.如果当前区间有same,那愉快地更新same就好了
2.如果当前区间有mult,那先对当前区间进行update_down,把mult标记先更新下去
3.如果只有add这个标记,那么更新一下即可 感觉就标记下放这方面,主要是注意标记相互之间的影响。
hhh-2016-04-04 09:41:07
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <functional>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int mod = 10007;
const int maxn = 100050;
struct node
{
int l,r;
ll mult,add,same;
int mid()
{
return (l+r)>>1;
}
int len()
{
return (r-l+1) ;
}
} tree[maxn<<2]; void update_up(int i)
{
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mult=1;
tree[i].add=0;
tree[i].same = -1;
if(l == r)
{
tree[i].same = 0;
return ;
}
build(lson,l,tree[i].mid());
build(rson,tree[i].mid()+1,r);
update_up(i);
} void update_down(int i)
{
if(tree[i].same != -1)
{
tree[lson].add = tree[rson].add = 0;
tree[lson].mult= tree[rson].mult = 1;
tree[lson].same = tree[rson].same = tree[i].same;
tree[i].same = -1;
}
if(tree[i].add)
{
if(tree[lson].same != -1)
tree[lson].same = (tree[lson].same+tree[i].add)%mod;
else if(tree[lson].mult > 1)
{
update_down(lson);
tree[lson].add = tree[i].add;
}
else
tree[lson].add = (tree[lson].add+tree[i].add)%mod;
if(tree[rson].same != -1)
tree[rson].same = (tree[rson].same+tree[i].add)%mod;
else if(tree[rson].mult > 1)
{
update_down(rson);
tree[rson].add = tree[i].add;
}
else
tree[rson].add = (tree[rson].add+tree[i].add)%mod;
tree[i].add = 0;
}
if(tree[i].mult > 1)
{
if(tree[lson].same != -1)
tree[lson].same = (tree[lson].same*tree[i].mult)%mod;
else if(tree[lson].add)
{
update_down(lson);
tree[lson].mult = tree[i].mult;
}
else
tree[lson].mult = (tree[lson].mult*tree[i].mult)%mod;
if(tree[rson].same != -1)
tree[rson].same = (tree[rson].same*tree[i].mult)%mod;
else if(tree[rson].add)
{
update_down(rson);
tree[rson].mult = tree[i].mult;
}
else
tree[rson].mult = (tree[rson].mult*tree[i].mult)%mod;
tree[i].mult = 1;
}
} void update(int i,int l,int r,int flag,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
if(flag == 1)
{
if(tree[i].same != -1)
tree[i].same = (tree[i].same+val)%mod;
else if(tree[i].mult > 1)
{
update_down(i);
tree[i].add = val;
}
else
tree[i].add =(tree[i].add+val)%mod;
}
else if(flag == 2)
{
if(tree[i].same != -1)
tree[i].same = (tree[i].same*val)%mod;
else if(tree[i].add)
{
update_down(i);
tree[i].mult = val;
}
else
tree[i].mult = (tree[i].mult * val) %mod;
}
else if(flag == 3)
{
tree[i].same = val;
tree[i].same %= mod;
tree[i].add = 0;
tree[i].mult = 1;
}
return ;
}
int mid = tree[i].mid();
update_down(i);
if(l <= mid)
update(lson,l,r,flag,val);
if(r > mid)
update(rson,l,r,flag,val);
update_up(i);
} ll query(int i,int l,int r,int p)
{
if(tree[i].l == tree[i].r)
{
ll ans = 1;
for(int j =1; j <= p; j++)
ans =(ll)(ans*tree[i].same)%mod;
return ans%mod;
}
if(tree[i].l >= l && tree[i].r <= r && tree[i].same != -1)
{
ll ans = 1;
for(int j =1; j <= p; j++)
ans =(ll)(ans*tree[i].same)%mod;
ans = (ll)ans*(tree[i].len()%mod)%mod;
return ans%mod;
}
ll all = 0;
update_down(i);
int mid = tree[i].mid();
if(l <= mid)
all =(all+query(lson,l,r,p))%mod;
if(r > mid)
all = (all+query(rson,l,r,p))%mod;
return all;
} int main()
{
int t,n,m;
while(scanf("%d%d",&n,&m) && n && m)
{
build(1,1,n);
for(int i = 1; i <= m; i++)
{
int op,x,y;
ll c;
scanf("%d%d%d%I64d",&op,&x,&y,&c);
if(op <= 3)
update(1,x,y,op,c);
else
printf("%I64d\n",query(1,x,y,c));
}
}
return 0;
}

  

hdu 4578 线段树(标记处理)的更多相关文章

  1. hdu 3954 线段树 (标记)

    Level up Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. HDU 4578 线段树玄学算法?

    Transformation 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is p ...

  3. K - Transformation HDU - 4578 线段树经典题(好题)

    题意:区间  加   变成定值 乘  区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题  设3个Lazy 标记分别为  change 改变mul乘 add加  优先度change>m ...

  4. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  5. HDU - 4578 线段树+三重操作

    这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...

  6. hdu 4578 线段树 ****

    链接:点我  1

  7. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu 4267 线段树间隔更新

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. mahony互补滤波器C编程

    //gx...分别为重力加速度在三个轴向的分力 由加速度计测得 //ax...分别为角速度在三个轴向的角速度 由陀螺仪测得 //最后得到最终滤波完毕的x.y.z方向的角度值(°) void IMUup ...

  2. 【iOS】Swift LAZY 修饰符和 LAZY 方法

    延时加载或者说延时初始化是很常用的优化方法,在构建和生成新的对象的时候,内存分配会在运行时耗费不少时间,如果有一些对象的属性和内容非常复杂的话,这个时间更是不可忽略.另外,有些情况下我们并不会立即用到 ...

  3. 第八条:覆盖equals时请遵守通用约定

    ==是物理相等 equals是逻辑相等 因为每个类的实例对象本质上都是唯一的 ,利用物理相等(==)是指一个实例只能相等于它自己. 利用逻辑相等是(equals)指 一个实例是否和另一个实例的某些关键 ...

  4. bzoj千题计划288:bzoj1876: [SDOI2009]SuperGCD

    http://www.lydsy.com/JudgeOnline/problem.php?id=1876 高精压位GCD 对于  GCD(a, b)  a>b 若 a 为奇数,b 为偶数,GCD ...

  5. 新手入门 git

    Git是目前世界上最先进的分布式版本控制系统 特点:高端大气上档次 什么是版本控制系统 系统自动记录文件改动 方便同事协作管理 不用自己管理一堆类似的文件了,也不需要把文件传来传去.如果想查看某次改动 ...

  6. C++ 异常小记

    catch必定使用拷贝构造函数 如下代码编译不通过,因为拷贝构造被标记delete #include <stdexcept> #include <cstdlib> #inclu ...

  7. Hadoop安装-部署-测试

    一:准备Linux环境[安装略]        a.修改主机名                vim /etc/sysconfig/network                NETWORKING= ...

  8. 说说Java代理模式

    代理实现可以分为静态代理和动态代理. 静态代理 静态代理模式其实很常见,比如买火车票这件小事:黄牛相当于是火车站的代理,我们可以通过黄牛买票,但只能去火车站进行改签和退票.在代码实现中相当于为一个委托 ...

  9. 大数据学习总结(6)what is our foucus

    1.搜索业务 2.画像业务 3.关系图谱 借助es构建搜索.画像和关系图谱

  10. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装

    hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装 一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh ...