Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 4095    Accepted Submission(s): 1008

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0

Sample Output

307
7489
/*
hdu 4578 线段树(标记处理) 给你n个初始化为0的数进行以下操作:
1 x y c 给[x,y]上的数全加上c add
2 x y c 给[x,y]上的数全乘上c mult
3 x y c 将[x,y]上面的数全置为c same
4 x y c 查询[x,y]上所有数的c次方的和,然后对10007取模 首先我们可以发现 加法和乘法都无法直接维护我们想要的到的立方和,但对于same而言
sum = (r-l+1)*(tree[i].same^p).
如果每次查询我们都查找到单点,有极大的可能TLE。所以考虑查询的时候直接查找same标记,而且p也很小。
然后就是如何处理add,mult,same这三个标记的冲突.
就是same而言,更新到一个区间,那么先前这个区间上的所有标记都会作废
对于add和mult很明显会冲突,到后面你并不能知道是先处理add还是mult.所以
add和mult不能同时共处一个区间,而且先前到达的标记要先更新下去. 于是对于add和mult分3种情况: //就add而言
1.如果当前区间有same,那愉快地更新same就好了
2.如果当前区间有mult,那先对当前区间进行update_down,把mult标记先更新下去
3.如果只有add这个标记,那么更新一下即可 感觉就标记下放这方面,主要是注意标记相互之间的影响。
hhh-2016-04-04 09:41:07
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <functional>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
const int mod = 10007;
const int maxn = 100050;
struct node
{
int l,r;
ll mult,add,same;
int mid()
{
return (l+r)>>1;
}
int len()
{
return (r-l+1) ;
}
} tree[maxn<<2]; void update_up(int i)
{
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mult=1;
tree[i].add=0;
tree[i].same = -1;
if(l == r)
{
tree[i].same = 0;
return ;
}
build(lson,l,tree[i].mid());
build(rson,tree[i].mid()+1,r);
update_up(i);
} void update_down(int i)
{
if(tree[i].same != -1)
{
tree[lson].add = tree[rson].add = 0;
tree[lson].mult= tree[rson].mult = 1;
tree[lson].same = tree[rson].same = tree[i].same;
tree[i].same = -1;
}
if(tree[i].add)
{
if(tree[lson].same != -1)
tree[lson].same = (tree[lson].same+tree[i].add)%mod;
else if(tree[lson].mult > 1)
{
update_down(lson);
tree[lson].add = tree[i].add;
}
else
tree[lson].add = (tree[lson].add+tree[i].add)%mod;
if(tree[rson].same != -1)
tree[rson].same = (tree[rson].same+tree[i].add)%mod;
else if(tree[rson].mult > 1)
{
update_down(rson);
tree[rson].add = tree[i].add;
}
else
tree[rson].add = (tree[rson].add+tree[i].add)%mod;
tree[i].add = 0;
}
if(tree[i].mult > 1)
{
if(tree[lson].same != -1)
tree[lson].same = (tree[lson].same*tree[i].mult)%mod;
else if(tree[lson].add)
{
update_down(lson);
tree[lson].mult = tree[i].mult;
}
else
tree[lson].mult = (tree[lson].mult*tree[i].mult)%mod;
if(tree[rson].same != -1)
tree[rson].same = (tree[rson].same*tree[i].mult)%mod;
else if(tree[rson].add)
{
update_down(rson);
tree[rson].mult = tree[i].mult;
}
else
tree[rson].mult = (tree[rson].mult*tree[i].mult)%mod;
tree[i].mult = 1;
}
} void update(int i,int l,int r,int flag,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
if(flag == 1)
{
if(tree[i].same != -1)
tree[i].same = (tree[i].same+val)%mod;
else if(tree[i].mult > 1)
{
update_down(i);
tree[i].add = val;
}
else
tree[i].add =(tree[i].add+val)%mod;
}
else if(flag == 2)
{
if(tree[i].same != -1)
tree[i].same = (tree[i].same*val)%mod;
else if(tree[i].add)
{
update_down(i);
tree[i].mult = val;
}
else
tree[i].mult = (tree[i].mult * val) %mod;
}
else if(flag == 3)
{
tree[i].same = val;
tree[i].same %= mod;
tree[i].add = 0;
tree[i].mult = 1;
}
return ;
}
int mid = tree[i].mid();
update_down(i);
if(l <= mid)
update(lson,l,r,flag,val);
if(r > mid)
update(rson,l,r,flag,val);
update_up(i);
} ll query(int i,int l,int r,int p)
{
if(tree[i].l == tree[i].r)
{
ll ans = 1;
for(int j =1; j <= p; j++)
ans =(ll)(ans*tree[i].same)%mod;
return ans%mod;
}
if(tree[i].l >= l && tree[i].r <= r && tree[i].same != -1)
{
ll ans = 1;
for(int j =1; j <= p; j++)
ans =(ll)(ans*tree[i].same)%mod;
ans = (ll)ans*(tree[i].len()%mod)%mod;
return ans%mod;
}
ll all = 0;
update_down(i);
int mid = tree[i].mid();
if(l <= mid)
all =(all+query(lson,l,r,p))%mod;
if(r > mid)
all = (all+query(rson,l,r,p))%mod;
return all;
} int main()
{
int t,n,m;
while(scanf("%d%d",&n,&m) && n && m)
{
build(1,1,n);
for(int i = 1; i <= m; i++)
{
int op,x,y;
ll c;
scanf("%d%d%d%I64d",&op,&x,&y,&c);
if(op <= 3)
update(1,x,y,op,c);
else
printf("%I64d\n",query(1,x,y,c));
}
}
return 0;
}

  

hdu 4578 线段树(标记处理)的更多相关文章

  1. hdu 3954 线段树 (标记)

    Level up Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. HDU 4578 线段树玄学算法?

    Transformation 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is p ...

  3. K - Transformation HDU - 4578 线段树经典题(好题)

    题意:区间  加   变成定值 乘  区间查询:和 平方和 立方和 思路:超级超级超级麻烦的一道题  设3个Lazy 标记分别为  change 改变mul乘 add加  优先度change>m ...

  4. HDU 4578 线段树复杂题

    题目大意: 题意:有一个序列,有四种操作: 1:区间[l,r]内的数全部加c. 2:区间[l,r]内的数全部乘c. 3:区间[l,r]内的数全部初始为c. 4:询问区间[l,r]内所有数的P次方之和. ...

  5. HDU - 4578 线段树+三重操作

    这道题自己写了很久,还是没写出来,也看了很多题解,感觉多数还是看的迷迷糊糊,最后面看到一篇大佬的才感觉恍然大悟. 先上一篇大佬的题解:https://blog.csdn.net/aqa20372995 ...

  6. hdu 4578 线段树 ****

    链接:点我  1

  7. hdu 3397 线段树双标记

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. hdu 2871 线段树(各种操作)

    Memory Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. hdu 4267 线段树间隔更新

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. OVS常用命令

    添加brideg: sudo ovs-vsctl add-br br0 删除brideg: sudo ovs-vsctl del-br br0 显示bridge: sudo ovs-vsctl sho ...

  2. zookeeper 启动失败 BindException: Address already in use 或者Error contacting service. It is probably not running

    平台:centos-6.3-i386 jdk-7u51 storm 0.9.1 python 2.6.6   hadoop 1.2.1 今天上午装storm的时候遇到这个问题,好郁闷.把网上介绍的方法 ...

  3. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  4. JAVA_SE基础——31.this关键字

    黑马程序员入学blog... 也算是学习笔记体会. this的通俗解释: 有一个A类,一个B方法,一个C变量,其中B和C都在类A中 this.B()就是调用A类中的B方法 this.C=1(假设C是一 ...

  5. xxe漏洞检测及代码执行过程

    这两天看了xxe漏洞,写一下自己的理解,xxe漏洞主要针对webservice危险的引用的外部实体并且未对外部实体进行敏感字符的过滤,从而可以造成命令执行,目録遍历等.首先存在漏洞的web服务一定是存 ...

  6. C语言Linix服务器网络爬虫项目(二)项目设计和通过一个http请求抓取网页的简单实现

    我们通过上一篇了解了爬虫具体要实现的工作之后,我们分析得出的网络爬虫的基本工作流程如下: 1.首先选取一部分精心挑选的种子URL: 2.将这些URL放入待抓取URL队列: 3.从待抓取URL队列中取出 ...

  7. LeetCode & Q219-Contains Duplicate II

    Array Hash Table Description: Given an array of integers and an integer k, find out whether there ar ...

  8. js正则表达语法

    /* *通过量词可以设置一个内容出现的次数 *量词只对它前边的一个内容起作用.所以在作用多个时需要用小括号()来向计算机说明这是一个整体. *-{n}代表正好出现n次. *-{m,n}出现了m-n次. ...

  9. 新概念英语(1-105)Full Of Mistakes

    Lesson 105 Full of mistakes 错误百出 Listen to the tape then answer this question. What was Sandra's pre ...

  10. SLF4J - 借助SLF4J, 统一适配所有日志实现为logback日志实现的实践

    一.屏蔽各种日志实现,去掉各种日志实现的实现依赖 二.引入slf4j和各种日志实现的适配器 1.引入slf4j 2.引入各种日志实现的适配器(适配到slf4j) 3.引入logback 引入logba ...