题目描述

Mayor of Yusland just won the lottery and decided to spent money on something good for town. For example, repair all the roads in the town.

Yusland consists of n intersections connected by n - 1 bidirectional roads. One can travel from any intersection to any other intersection using only these roads.

There is only one road repairing company in town, named "RC company". Company's center is located at the intersection 1. RC company doesn't repair roads you tell them. Instead, they have workers at some intersections, who can repair only some specific paths. The i-th worker can be paid ci coins and then he repairs all roads on a path from ui to some vi that lies on the path from ui to intersection 1.

Mayor asks you to choose the cheapest way to hire some subset of workers in order to repair all the roads in Yusland. It's allowed that some roads will be repaired more than once.

If it's impossible to repair all roads print  - 1.

题目大意:

每一条边都需要被修建一次,雇佣第\(i\)个工人需要花 \(ci\) 的钱,能够帮你修建 \(ui\),\(vi\),之间的所有道路,并且保证 \(vi\) 是,\(ui\) 到根的路径上的点

解题报告:

用时:2h,6MLE

分析这题,叶子节点必须选,然后对于没有被覆盖的也必须从子树中选,但是需要决策,所以只能DP,考虑状态:

很容易想到最暴力的DP,定义 \(f[x][j]\),表示 \(x\) 子树内的边都被修过,且已选工人最远能覆盖到的深度为 \(j\),转移非常简单,但是复杂度不对,考虑消除第二维:不会.....

容易想到树链剖分,即把当前节点能更新到的父节点做一遍链剖,更新线段树

显然不行,因为不能保证其他子树都被覆盖

参考题解:

思想非常巧妙,大概是把其他子树中的DP值累加到某一棵子树上,这样就巧妙的使得线段树中的DP值都是合法的了,为了消除在 \(vi\) 结束的影响,我们在 \(ui\) 和 \(vi\) 上分别挂链,然后dfs时对应线段树中添加删除即可

注意实现时可以考虑不参考我的方法,其实不一定只对关键点建立线段树,不然细节很多

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=300005;const ll inf=2e15;
int head[N],nxt[N<<2],to[N<<2],num=0,n,m,val[N],dfn[N],DFN=0,L[N],R[N],s[N],t[N];
void link(int x,int y,int *h){nxt[++num]=h[x];to[num]=y;h[x]=num;}
void priwork(int x,int last){
L[x]=DFN+1;
for(int i=s[x];i;i=nxt[i])dfn[to[i]]=++DFN;
for(int i=head[x];i;i=nxt[i])
if(to[i]!=last)priwork(to[i],x);
R[x]=DFN;
}
ll tree[N<<2],mark[N<<2],f[N];
#define ls (node<<1)
#define rs (node<<1|1)
void build(int l,int r,int node){
tree[node]=inf;if(l==r)return ;
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
tree[node]=Min(tree[ls],tree[rs]);
}
il void updata(int l,int r,int node,int sa,int se,ll to){
if(sa>se)return ;
if(l>se || r<sa)return ;
if(sa<=l && r<=se){
tree[node]=Min(tree[node]+to,inf);
mark[node]=Min(mark[node]+to,inf);
return ;
}
int mid=(l+r)>>1;
updata(l,mid,ls,sa,se,to);updata(mid+1,r,rs,sa,se,to);
tree[node]=Min(tree[ls],tree[rs])+mark[node];
}
il void Modify(int l,int r,int node,int sa,ll to){
if(l==r){tree[node]=Min(to,inf);return ;}
int mid=(l+r)>>1;
if(sa<=mid)Modify(l,mid,ls,sa,to);
else Modify(mid+1,r,rs,sa,to);
tree[node]=Min(tree[ls],tree[rs])+mark[node];
}
il ll query(int l,int r,int node,int sa,int se){
if(sa>se)return inf;
if(l==sa && r==se)return tree[node];
int mid=(l+r)>>1;
if(sa>mid)return query(mid+1,r,rs,sa,se)+mark[node];
else if(se<=mid)return query(l,mid,ls,sa,se)+mark[node];
return min(query(l,mid,ls,sa,mid),query(mid+1,r,rs,mid+1,se))
+mark[node];
}
il void dfs(int x,int last){
int u;ll tot=0;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(to[i]==last)continue;
dfs(u,x);
tot+=f[u];tot=Min(tot,inf);
}
if(x==1){f[x]=tot;return ;}
for(int i=s[x];i;i=nxt[i])Modify(1,m,1,dfn[to[i]],tot+val[to[i]]);
for(int i=t[x];i;i=nxt[i])Modify(1,m,1,dfn[to[i]],inf);
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last)continue;
updata(1,m,1,L[u],R[u],tot-f[u]);
}
f[x]=query(1,m,1,L[x],R[x]);
}
void work()
{
int x,y;
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
link(x,y,head);link(y,x,head);
}
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&val[i]);
link(x,i,s);link(y,i,t);
}
priwork(1,1);build(1,m,1);dfs(1,1);
if(f[1]!=inf)printf("%lld\n",f[1]);
else puts("-1");
} int main(){work();return 0;}

Codeforces 671 D. Roads in Yusland的更多相关文章

  1. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  2. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  3. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  4. [Codeforces671D]Roads in Yusland

    [Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...

  5. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  6. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  7. Codeforces 671D Roads in Yusland [树形DP,线段树合并]

    洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...

  8. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

  9. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...

随机推荐

  1. JAVA线程概念

    一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程中可以启动多个线程.比如在 ...

  2. iOS开发-OC中TabView的编辑

    UITableView编辑 1> UITableView 编辑流程 2> UITableView 编辑步骤(四步) ① 第一步 : 让 TableView 处于编辑状态(在按钮点击事件方法 ...

  3. IDEA插件和快捷设置

    前言 IDEA全名Intellij IDEA,是Java开发的集成环境,它有两个版本,专业版(Ultimate)和社区版(Community),专业版需要注册,而社区版不用注册,同时需要注意的是社区版 ...

  4. 算法题丨3Sum Closest

    描述 Given an array S of n integers, find three integers in S such that the sum is closest to a given ...

  5. eclipse怎么停止building workspace

    Eclipse 一直不停 building workspace完美解决总结 一.产生这个问题的原因多种 1.自动升级 2.未正确关闭 3.maven下载lib挂起 等.. 二.解决总结 (1).解决方 ...

  6. Docker学习笔记 - Docker的容器

    docker logs  [-f]  [-t]  [--tail]  容器名 -f -t --tail="all" 无参数:返回所有日志 -f 一直跟踪变化并返回 -t 带时间戳返 ...

  7. Spark快速入门

    Spark 快速入门   本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...

  8. 由路由器AP隔离引起的WEB服务不能访问的问题

    最近在自己的电脑上运行了一个Web服务,发现它只能被本机访问,无法在同一个局域网的其它设备访问. 于是在网上搜索了各种资料,通通都是在操作系统层面来分析解决问题的. 而我怎么尝试都不成功的情况下,差点 ...

  9. jquery-模仿qq提示消息

    ( function() { var ua = navigator.userAgent.toLowerCase(); var is = (ua.match(/\b(chrome|opera|safar ...

  10. python 类的进阶

    类的进阶 一 isinstance(obj,cls)和issubclass(sub,super) class Foo: def __init__(self,name): self.name = nam ...