题目描述

约翰有 N 头奶牛,第 i 头奶牛的编号是 S i ,每头奶牛的编号都不同。这些奶牛最近在闹脾气,
为表达不满的情绪,她们在排队的时候一定要排成混乱的队伍。如果一只队伍里所有位置相邻的奶牛
的编号之差都大于 K,那么这就是一只混乱的队伍,其中 K 是一个给定的整数。比如说,当 K = 2
时,序列 (1,3,5,2,6,4) 就是一支混乱的队伍,而 (1,3,6,5,2,4) 不是,因为 6 和 5 只差 1,不够混
乱。请问,这 N 头奶牛可以排成多少种混乱的队形呢?

输入

• 第一行:两个整数 N 和 K,4 ≤ N ≤ 16, 1 ≤ K ≤ 3400
• 第二行到第 N + 1 行:第 i + 1 行有一个整数 S i ,1 ≤ S i ≤ 25000

输出

• 单个整数:表示混乱队伍的数量

样例输入

4 1 3 4 2 1

样例输出

2

提示

两种排法是 3,1,4,2 和 2,4,1,3

题解:

乱搞搞对的,不知对不对,看到n<=16 于是想到状压

F[i][j] 表示以i结尾,状态为j的方案数

然后就是如果满足 S[i]-S[k]>p 就F[i][j]+=F[k][j-(1<<(i-1))]

注意开long long

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int a[N];long long F[N][<<N];
int main()
{
int n,p;
scanf("%d%d",&n,&p);
for(int i=;i<=n;i++)scanf("%d",&a[i]),F[i][(<<(i-))]=;
sort(a+,a+n+);
int m=(<<n)-;
for(int j=;j<=m;j++)
{
for(int i=;i<=n;i++)
{
if(!(j&(<<(i-))))continue;
for(int k=;k<=n;k++)
{
if(abs(a[i]-a[k])<=p)continue;
if(!(j&(<<(k-))))continue;
F[i][j]+=F[k][j-(<<(i-))];
}
}
}
long long ans=;
for(int i=;i<=n;i++)ans+=F[i][m];
printf("%lld",ans);
return ;
}

【USACO08NOV】奶牛混合起来Mixed Up Cows的更多相关文章

  1. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  2. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  3. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  4. [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  5. luogu P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  6. [USACO08NOV]奶牛混合起来Mixed Up Cows(状态压缩DP)

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  7. 【题解】Luogu2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  8. P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    题目描述 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的编号之差均 ...

  9. 洛谷 P2915 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    类似于n皇后的思想,只要把dfs表示放置情况的数字压缩成一个整数,就能实现记忆化搜索了. 一些有关集合的操作: {i}在集合S内:S&(1<<i)==1: 将{i}加入集合S:S= ...

  10. 【[USACO08NOV]奶牛混合起来Mixed Up Cows】

    首先我们能够一眼看到4 <= N <= 16,那么就是它了,我们要压缩的状态就是它了 那么之后能我们用这个状态表示什么呢,我们要表示的显然是每只奶牛是否在队伍中 比如说10吧,转成二进制后 ...

随机推荐

  1. 每日冲刺报告--Day2

    敏捷冲刺每日报告--Day2 情况简介 今天我们三个人在一起开了会,分析了我们面临的情况以及下一阶段的计划.一个重大的改进是,我们准备把之前用txt文件格式存储订阅列表改成了文件json格式. 任务进 ...

  2. C语言——第一次作业

    **学习内容总结** 本周进行了算法的初步学习,用计算机的思维方式去思考问题,并学习了如何用传统程序框图表示算法. 相关内容: 1.算法是用来解决问题的方法与步骤. 2.计算机擅长重复,常用枚举的方法 ...

  3. Scrum 冲刺 第二日

    Scrum 冲刺 第二日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...

  4. Css之导航栏学习

    Css: ul { list-style-type:none; margin:; padding:; overflow:hidden; background-color:blue; /*固定在顶部*/ ...

  5. JAVA_SE基础——68.RunTime类

    RunTime类代表Java程序的运行时环境,每一个Java程序都有一个与之对应的Runtime实例,应用程序通过该对象与运行时环境相连,应用程序不能创建自己的Runtime实例,但可以通过getRu ...

  6. 【learning】多项式相关(求逆、开根、除法、取模)

    (首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里 ...

  7. 剑指offer-数据流中的中位数

    题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值.   ...

  8. Mysql数据库主从配置

    一.为什么要使用数据库主从架构 一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的.数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读 ...

  9. [UWP]针对UWP程序多语言支持的总结,含RTL

    UWP 对 Globalization and localization 的支持非常好,可以非常容易地实现应用程序本地化. 所谓本地化,表现最为直观的就是UI上文字和布局方式了,针对文字,提供不同的语 ...

  10. HTTP协议扫盲(五)HTTP请求防篡改

    相关链接: http://www.cnblogs.com/ziyi--caolu/p/4742577.html 请求防重放:http://www.2cto.com/kf/201612/573045.h ...