Problem

有一个\(1*n\)的矩阵,固定第一个数为\(1\),其他填正整数, 且相邻数的差不能超过\(1\),求方案数。

\(n\le 10^6\)

Solution

容易发现答案是\(f_n=f_{n-1}*3-g_{n}\)。

其中\(g_i\)表示从\((0,0)\)走到\((i,0)\)可以向上,向下向右走一格,但是只能在第一象限的方案数。

然后这个显然可以用 组合数 + 卡特兰数 推一波:$$\sum_{i=1}^{\frac{n}{2}}\binom{n}{2i}Catalan_{i}$$但时间复杂度是\(O(n^2)\)的。

然后去学了一发姿势,发现这个是所谓的默慈金数

一个给定的数\(n\)的默慈金数是:

  • 在一个圆上的\(n\)个点间,画出彼此不相交的弦的方案数

其中,\(M(1)=1,M(2)=2\)

\[M(n+1)=M(n)+\sum_{i=0}^{n-1}M(i)*M(n-1-i)
\]

可以推导出$$M(n+1)={{(2n+3)M(n)+3nM(n-1)}\over n+3}$$

\[M(n)={{(2n+1)M(n-1)+(3n-3)M(n-2)}\over n+2}
\]

有较好英文水平姿势的同学可以参考推导极其生成函数(反正我是不可能会的),考场上我觉得只要会\(O(n^2)\)的方法,然后只需知道它是由\(n-1,n-2\)推到\(n\),找一下规律应该可以。。。

http://mathworld.wolfram.com/MotzkinNumber.html

http://www.docin.com/p1-964777006.html

Code
#include <bits/stdc++.h>

#define F(i,a,b) for (int i = a; i <= b; i ++)

using namespace std;

const int N = 1e6 + 10;
const int Mo = 1e9 + 7; long long f[N], M[N], n; int ksm(int x, int y) {
int ans = 1;
for (; y ; y >>= 1, x = (1ll * x * x) % Mo)
if (y & 1)
ans = (1ll * ans * x) % Mo;
return ans;
} int main() {
scanf("%d", &n); f[1] = 1, f[2] = 2;
M[1] = 1, M[2] = 2;
F(i, 3, n) {
M[i] = ((2 * i + 1) * M[i - 1] + (3 * i - 3) * M[i - 2]) % Mo * ksm(i + 2, Mo - 2) % Mo;
f[i] = (f[i - 1] * 3 - M[i - 2]) % Mo;
} printf("%d\n", (f[n] + Mo) % Mo);
}

51nod1556 计算(默慈金数)的更多相关文章

  1. 51 Nod 1556计算(默慈金数的应用)

    #include<bits/stdc++.h> #define mod 1000000007 using namespace std; typedef long long ll; ll m ...

  2. hdu5673 Robot 卡特兰数 / 默慈金数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5673 分析: 这道题是一道裸的默慈金数,比较容易想到的是用卡特兰数来做.不了解的可以先学习一下. 卡特 ...

  3. HDU5673 Robot 默慈金数

    分析: 注:然后学了一发线性筛逆元的姿势 链接:http://blog.miskcoo.com/2014/09/linear-find-all-invert #include<iostream& ...

  4. hdu-5673 Robot(默次金数)

    题目链接: Robot Time Limit: 12000/6000 MS (Java/Others)  Memory Limit: 65536/65536 K (Java/Others) 问题描述 ...

  5. 51nod1556 计算

    ans[n]=ans[n-1]*3-m[n-2];YY一下可以懂的.减掉的就是往下走的情况不符合正整数的情况.m是默慈金数. #include<cstdio> #include<cs ...

  6. Python 素数判断;以及默尼森数

    1. 素数/质数 只能被2或者本身整除的正整数. 2. 默尼森数 P是素数且M也是素数,并且满足等式M=2^P-1,则称M为默尼森数. 编程小要求: 输出前5个默尼森数 1)最外层循环找素数 中间层循 ...

  7. python计算文件的行数和读取某一行内容的实现方法

    一.计算文件的行数 最简单的办法是把文件读入一个大的列表中,然后统计列表的长度.如果文件的路径是以参数的形式filepath传递的,那么只用一行代码就可以完成我们的需求了:count = len(op ...

  8. js计算字符串的字节数和字符串与二进制的相互转化

    一.js计算字符串的字节数方法: //blob获取字符串的字节 var debug = "好的"; var blob = new Blob([debug],{type : 'tex ...

  9. 【转载】python计算文件的行数和读取某一行内容的实现方法

    一.计算文件的行数 最简单的办法是把文件读入一个大的列表中,然后统计列表的长度.如果文件的路径是以参数的形式filepath传递的,那么只用一行代码就可以完成我们的需求了: count = len(o ...

随机推荐

  1. vuex最简单、最直白、最全的入门文档

    前言 我们经常用element-ui做后台管理系统,经常会遇到父组件给子组件传递数据,下面一个简单的例子,点击按钮,把弹框显示变量数据通过子组件的props属性传递,子组件通过$emit事件监听把数据 ...

  2. Dynamics 365中显示格式为URL的字段极少部分URL值录入了不显示怎么回事?

    微软动态CRM专家罗勇 ,回复318或者20190315可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 对于如下类型的字段, ...

  3. (一) Keras 一元线性回归

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 环境为 an ...

  4. Android:随机生成算数四则运算简单demo(随机生成2~4组数字,进行加减乘除运算)

    首先创建一个新的Android工程,下面是页面布局: Java代码: 我们先来分析一下如何完成的步骤: 1.首先,先完成生成随机数.(包括随机生成几组数字,范围为多少的数字,四则运算符号等): 2.要 ...

  5. MyDAL - in && not in 条件 使用

    索引: 目录索引 一.API 列表 C# 代码中 接口 IList.Contains() 方法生成 SQL 对应的 in(val1,val2,... ...) 如:.Queryer<Agent& ...

  6. 逻辑回归&线性支持向量机

    代码: # -*- coding: utf-8 -*- """ Created on Tue Jul 17 10:13:20 2018 @author: zhen &qu ...

  7. SQL SERVER 排查脚本

    随着数据量和并发量的增大,数据库有时会遇到CPU,内存,IO  性能问题:整理了一下有关排查数据相关的SQL脚本,以便排查问题之用: 1,哪些SQL 消耗CPU /* 查看哪些SQL语句消耗CPU,找 ...

  8. Python Learning: 02

    OK, let's continue. Conditional Judgments and Loop if if-else if-elif-else while for break continue ...

  9. Java基础系列--05_面向对象

    1.概述: (1)面向过程:将问题一步一步的解决的过程(详细步骤),在C语言中所有的代码都是基于过程化的代码. (2)面向对象:面向对象是基于面向过程的编程思想,所有的事情都交由创建出来的对象去指挥. ...

  10. Andriod studio 打包aar

    因为项目不同,有些公用库而且还是c++的,还有一些带资源的,简单的复制遇到库升级又是一轮配置,编译成aar则解决这些麻烦. 但是默认andriod studio的make moudle只生成debug ...