[POJ2115]C Looooops 拓展欧几里得
这个题要找到本身的模型就行了
a+c*x=b(mod 2k) -> c*x+2k*y=b-a
求这个方程对于x,y有没有整数解.
如果没有学过,强烈建议看看我之后写的一篇博客!!
这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QAQ)(求解一次整数方程的整数解)应该是能做出来的,下面简单讲讲
已知一组二元一次方程 ax+by=c(a,b为已知;x,y未知) 我们要求x和y的整数解。
这个咋做呢 首先 我们知道 gcd(a,b)=gcd(b,a%b)这个就是朴素欧几里德(辗转相除) ,又知道一个方程ax+by=gcd(a,b)必有解(通过贝祖定理可知(我也不会证明QAQ))。
这些证明见《数学一本通》或者百度搜搜。
然后我们就有 ax+by=gcd(a,b)=gcd(b, a%b)
=bx+(a%b)y
=bx+(a-[a/b]*b)y
=bx+ay-[a/b]*by
=y*a+(x-[a/b]*y)*b
最后x变成了y,y变成了x-[a/b]*y
然后就可以通过不断递归求gcd来减小a,b的范围,到b为0时就有ax+0*y=a。x显然为1,y为0。
在找到最小解之后,递归回去修改x,y。
当且仅当gcd(a,b)=1这个方程有解。
一开始对于ax+by=c这种形式的,最好先约去(a,b)的gcd,最后再给c乘回来。
这个程序最后对于sum进行了操作,这是因为要求sum的最小正整数解。
这是因为:得到两个相邻x解的间隔恰好为b(这个比较显然的吧。。QwQ),然后最小正整数的x解就为(x%b+b)了2333。(公式没用LaTeX有点丑TAT)
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cctype>
#include <iostream>
#define For(i, l, r) for(int i = (l); i <= (int)(r); ++i)
#define Fordown(i, r, l) for(int i = (r); i >= (int)(l); --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define LL long long using namespace std; LL extended_gcd (LL a, LL b, LL &x, LL &y) {
LL ret, tmp;
if (!b) {x = ; y = ; return a;}
ret = extended_gcd (b, a%b, x, y);
tmp = x;
x = y;
y = tmp - a / b * y;
return ret;
} int main(){
#ifndef ONLINE_JUDGE
freopen ("program.in", "r", stdin);
freopen ("program.out", "w", stdout);
#endif
LL a, b, c, k;
for(;;) {
scanf ("%lld%lld%lld%lld", &a, &b, &c, &k);
if (!a && !b && !c && !k) return ;
k = (long long) << k;
LL x, y;
LL ret = extended_gcd (c, k, x, y); //进行拓欧,求之前写的那个方程有无解
if ((b - a) % ret != ) {printf ("FOREVER\n"); continue;} //判断gcd是否为1,判断有无解
LL sum = (x * (b - a) / ret) % k; //同比扩大的倍数
sum = (sum % (k / ret) + k / ret) % (k / ret); //求sum的正整数解
cout << sum << endl;
}
}
[POJ2115]C Looooops 拓展欧几里得的更多相关文章
- poj2115 C Looooops——扩展欧几里得
题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...
- POJ2115 C Looooops[扩展欧几里得]
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24355 Accepted: 6788 Descr ...
- Looooops(求解同余方程、同余方程用法)【拓展欧几里得】
Looooops(点击) A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- NOIP2012拓展欧几里得
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- POJ1061 青蛙的约会-拓展欧几里得
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)
污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...
随机推荐
- 微信小程序中不同页面间的参数传递
从样式页面WXML向逻辑页面JS传递点击事件的响应函数中传递参数 <!--此为样式页面--> <block wx:for="{{postList}}" wx:fo ...
- HashSet和CopyOnWriteArraySet
前言 这篇文章的目的如下: HashSet是如何保证元素的不重复和无序 HashSet的增删(改查?)原理 CopyOnWriteArraySet支持并发的原理 CopyOnWriteArraySet ...
- elasticsearch节点(角色)类型解释node.master和node.data
在生产环境下,如果不修改elasticsearch节点的角色信息,在高数据量,高并发的场景下集群容易出现脑裂等问题. 默认情况下,elasticsearch集群中每个节点都有成为主节点的资格,也都存储 ...
- 根据展示文字自适应 cell 高度,实现点击cell的伸缩扩展
1.要根据展示的文字计算cell的高度, 再此给NSString写的延展的方法, 以此获取展示文字的高度 2.在自定义的cell中 声明属性和定义方法 注:在cell上初始化子控件,最好用代码写, 不 ...
- iOS 8 UIAlertController 和 UIAlertAction
将alertView 和 actionSheet 封装在UIAlertController 里面化整为零,使开发者更便利 当我们一味的追求高内聚,低耦合的时候,伟大的苹果反其道而行之,这也告诉了我们一 ...
- Windows Server 2016-图形化备份域控制器
上边几章节我们补充了有关Windows Server 2016系统层面的相关内容,本章切回Active Directory正题,继续围绕AD域相关内容进行不断梳理补充.Windows Server B ...
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- yaf代码生成工具的使用
具体步骤如下: 1.下载php-yaf源码: git clone https://github.com/laruence/php-yaf/ 2.运行代码生成工具: /Users/helloxiaozh ...
- kolla管理openstack容器
本文以nova-api容器为例,说明kolla如何将nova-api配置文件传入容器,容器如何启动nova-api服务并读取配置文件 注:第一部分比较无趣,二三部分 会有意思一些 1. nova-ap ...
- springmvc报406错误
springmvc出现406,无非就两种情况,第一,百分之九十是json包没加进来,第二,百分之十,就是@ResponseBody返回的的数据,在请求的URL中不能有 .html的后缀