读论文系列:Object Detection CVPR2016 YOLO
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection
转载请注明作者:梦里茶

YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题
网络结构
输入图片:resize到448x448
整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的)

- 将图片划分为SxS个格子,S=7
- 输出一个SxS大小的class probability map,为图片上每个格子所属的分类

- 输出为每个格子输出B个bounding box,每个bounding box由x,y,w,h表示,为每个bounding box输出一个confidence,即属于前景的置信度
于是输出可以表示为一个SxSx(B*(4+1)+C)的tensor,训练只需要根据数据集准备好这样的tensor进行regression就行
- 对所有bounding box按照confidence做非极大抑制,得到检测结果
训练
Loss

- 前两行为定位loss,λcoord为定位loss的权重,论文中取5
- 第三行为一个bounding box属于前景时的置信度回归loss,
- 当格子中有对象出现时,真实Ci为1,
- 1ijobj是一个条件表达式,当bounding box“负责(is responsible for)”图中一个真实对象时为1,否则为0,
- 所谓“负责”,指的是在当前这个格子的所有bounding box中,这个bounding box与真实的bounding box重叠率最大
- 第四行为一个bounding box属于背景时的置信度回归loss,
- 为了避免负样本过多导致模型跑偏, λnoobj=0.5,
- 1ijnoobj是一个条件表达式,为1ijobj取反
于是我们可以发现一个格子的两个bounding box的分工:一个贡献前景loss,一个贡献背景loss ,不论是前景背景box,我们都希望它们的confidence接近真实confidence,实际上,如果 λnoobj=1, 第四五行可以合并为一项求和,但由于背景box太多,所以才单独拆开加了权重约束
第五行为分类loss,1iobj是一个条件表达式,当有对象出现在这个格子中,取1,否则取0
YOLO里最核心的东西就讲完了,其实可以把YOLO看作固定region proposal的Faster RCNN,于是可以省掉Faster RCNN里region proposal部分,分类和bounding box regression跟Faster RCNN是差不多的
细节
Leaky Relu
网络中只有最后的全连接层用了线性的激活函数,其他层用了leaky Relu:f(x)=max(x, 0.1x)
对比Relu和leaky Relu


在x小于0的时候,用了0.1x,避免使用relu的时候有些单元永远得不到激活(Dead ReLU Problem)
Fast YOLO
卷积层更少,只有9层卷积+2层全连接,每层filters也更少,于是速度更快
实验效果
- 对比当前最好方法:

Fast YOLO速度最快,准确率不太高,但还是比传统方法好,YOLO则比较中庸,速度不慢,准确率也不太高,但也还行。
- 再看看具体是在哪些类型的图片上出错的:

主要是定位不准(毕竟没有精细的region proposal),但是在背景上出错较少(不容易把背景当成对象)
缺点
- 固定的格子是一种很强的空间限制,7x7的格子决定了整张图片最多预测98个对象,对于对象数量很多的图片(比如鸟群)无能为力
- 难以泛化到其他形状或角度的物体上
- 损失函数没有考虑不同尺寸物体的error权重,大box权重和小box权重一样
Summary
Anyway,YOLO结构还是挺优雅的,比Faster RCNN黑科技少多了,更重要的是,它是当时最快的深度学习检测模型,也是很值得肯定的。
读论文系列:Object Detection CVPR2016 YOLO的更多相关文章
- 读论文系列:Deep transfer learning person re-identification
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao X ...
- 读论文系列:Object Detection SPP-net
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivat ...
- 读论文系列:Object Detection NIPS2015 Faster RCNN
转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和 ...
- 读论文系列:Object Detection ICCV2015 Fast RCNN
Fast RCNN是对RCNN的性能优化版本,在VGG16上,Fast R-CNN训练速度是RCNN的9倍, 测试速度是RCNN213倍:训练速度是SPP-net的3倍,测试速度是SPP-net的3倍 ...
- 读论文系列:Object Detection ECCV2016 SSD
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层featur ...
- [论文阅读]Object detection at 200 Frames Per Second
本文提出了一个有效且快速的目标检测器,该目标检测器得速度可以达到200+fps,在Pascal VOC-2007上的mAP比Tiny-Yolo-v2高出14. 本文从以下三个方面对网络进行改进. 网络 ...
- 读论文系列:Nearest Keyword Search in XML Documents中使用的数据结构(CT、ECT)
Reference: [1]Y. Tao, S. Papadopoulos, C. Sheng, K. Stefanidis. Nearest Keyword Search in XML Docume ...
- YOLO object detection with OpenCV
Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...
- 论文阅读笔记三十五:R-FCN:Object Detection via Region-based Fully Convolutional Networks(CVPR2016)
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网 ...
随机推荐
- python学习之字典(Dictionary)练习
Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型 字典中分为键值对 , key 类型需要时被哈希. value 类型可以是 字符串.数字.元组等其他容器模 ...
- iOS - UIView 动画
1.UIView 动画 核心动画 和 UIView 动画 的区别: 核心动画一切都是假象,并不会真实的改变图层的属性值,如果以后做动画的时候,不需要与用户交互,通常用核心动画(转场). UIView ...
- 【转】Nginx的启动、停止与重启
Nginx的启动.停止与重启 启动 启动代码格式:nginx安装目录地址 -c nginx配置文件地址 例如: [root@LinuxServer sbin]# /usr/local/nginx/sb ...
- R语言学习 第七篇:列表
列表(List)是R中最复杂的数据类型,一般来说,列表是数据对象的有序集合,但是,列表的各个元素(item)的数据类型可以不同,每个元素的长度可以不同,是R中最灵活的数据类型.列表项可以是列表类型,因 ...
- 一:学习Linux前准备工作
1:虚拟机,网站上有很多种类的虚拟机,找一款适合自己用的.我这里使用的是 Virtual Box 下载地址:https://www.virtualbox.org/ 安装虚拟机 一路 Next 就可以. ...
- PyCharm运行报编码错误
运行报如下错误: SyntaxError: Non-ASCII character '\xe8' in file /home/ubuntu/code/201803091253-text.py on l ...
- 【视频编解码·学习笔记】11. 提取SPS信息程序
一.准备工作: 回到之前SimpleH264Analyzer程序,找到SPS信息,并对其做解析 调整项目目录结构: 修改Global.h文件中代码,添加新数据类型UINT16,之前编写的工程中,UIN ...
- 洛谷P2444 [POI2000]病毒(AC自动机,DFS求环)
洛谷题目传送门 AC自动机入门--yyb巨佬的博客 AC自动机入手经典好题(虽然年代久远) 有了fail指针,trie树就不是原来的树型结构了,我们可以把它叫做trie图,由父节点向子节点连的边和fa ...
- FFT/NTT 总结
本总结主要用于帮助个人理解,讲得不足之处,还请各位看官谅解 FFT 补充知识 \(n\)次单位复根(\(w_n\)): 使得\(z^n=1\)的一类复数,这些复数一共有\(n\)个,它们都分布在复平面 ...
- centos7安装eclipse方法
很多喜欢编程的朋友并不是很喜欢使用Windows来编写程序,尽管可视化编程但是操作相对繁琐,因而只在电脑上装有Linux系统,那么我们来说一下Linux下安装Java EE编程工具eclipse的方法 ...