题面在这里

题意

给定一棵树(\(n\le10^5\)),仓鼠随机选择起点和终点,之后从起点开始随机游走,每次都会等概率地选择和其相邻的任一道路,直到到达终点,求到达终点时步数的期望

sol

因为这一道题中的起点和终点都是不确定的,不好统计

于是先考虑终点固定的情况,此时我们把终点当作整棵树的\(root\),在\(O(n)\)算法之前的陈述中,直接以根节点代指终点,不做说明

那么设\(f[x]\)表示节点\(x\)向根节点方向(即父亲方向)移动一步的期望步数

我们可以推出如下式子:

对于叶子节点:\(f[leaf]=1\)(只要再走一步就一定会走到其父亲)

对于根节点:\(f[root]=0\)(根本就不需要走)

对于其余节点(设\(d[x]\)表示其度数):$$f[x]=1+\frac{1}{d[x]}\times\sum_{son\in x}{(f[son]+f[x])}$$(有\(\frac{1}{d[x]}\)的概率走到\(x\)的儿子节点,再走回来)

上面的第三个式子再推一下:

\[f[x]=1+\frac{1}{d[x]}\times\sum_{son\in x}{f[son]}+\frac{d[x]-1}{d[x]}\times f[x]
\]

\[\frac{1}{d[x]}\times f[x]=1+\frac{1}{d[x]}\times\sum_{son\in x}{f[son]}
\]

\[f[x]=d[x]+\sum_{son\in x}{f[son]}
\]

这样就比较好求了,因为对于每一个结点\(x\),有\(sz[x]\)个点必须经过它才能到达终点,

那么直接根据这个树形DP\(n\)次,每次中推出\(f[x]\)然后\(ans+=\sum_{i=1}^{n}f[i]\times sz[i]\)(\(sz[i]\)表示子树大小)就可以获得50分

接下来考虑\(O(n)\)的算法,稍作改进即可(接下来要说明的根节点和终点会有所不同)

我们考虑在所有情况下的\(f[x],sz[x]\)及其贡献

先以1号节点为根建立一棵有根树,对于每个节点维护其子树大小(\(s[x]\))和子树内度数和(\(sumd[x]\)),并令\(totd=\sum_{i=1}^{n}d[i]\)

该节点就是终点点:\(f[x]=0\),\(sz[x]=n\),一次

终点在该节点的某一个儿子的子树\(v\)中:\(f[x]=totd-sumd[v]\),\(sz[x]=n-s[v]\),\(s[v]\)次

终点不在该节点的某一个儿子的子树中:

\(f[x]=sumd[x]\),\(sz[x]=s[v]\),\(n-s[u]\)次

最后对于每一个节点直接统计即可

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=998244353;
const int N=100010;
const int M=90000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il ll poww(ll a,ll b){
RG ll ret=1;
for(a%=mod;b;b>>=1,a=a*a%mod)if(b&1)ret=ret*a%mod;
return ret;
} il void file(){
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
} int n,rev,head[N],d[N],p[N],nxt[N<<1],to[N<<1],cnt,totd,ans;
il void add(int u,int v){
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
d[v]++;
} int sz[N],fa[N];
il void dfs(int u,int f){
sz[u]=1;fa[u]=f;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==f)continue;
dfs(v,u);sz[u]+=sz[v];d[u]+=d[v];
}
} int main()
{
file();
n=read();rev=poww(1ll*n*n%mod,mod-2);
for(RG int i=1,u,v;i<n;i++){
u=read();v=read();
add(u,v);add(v,u);
} for(RG int i=1;i<=n;i++)totd+=d[i];
dfs(1,0); for(RG int u=1;u<=n;u++)
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];
if(v==fa[u]){
ans=(ans+1ll*d[u]*sz[u]%mod*(n-sz[u])%mod)%mod;
}
else{
ans=(ans+1ll*(totd-d[v])*(n-sz[v])%mod*sz[v]%mod)%mod;
}
} printf("%lld\n",1ll*ans*rev%mod);
return 0;
}

[luogu3412]仓鼠找sugar II的更多相关文章

  1. Luogu P3412 仓鼠找$sugar$ $II$

    Luogu P3412 仓鼠找\(sugar\) \(II\) 题目大意: 给定一棵\(n\)个点的树, 仓鼠每次移动都会等概率选择一个与当前点相邻的点,并移动到此点. 现在随机生成一个起点.一个终点 ...

  2. 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)

    洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...

  3. luogu P3412 仓鼠找sugar II 期望 树形dp

    LINK:仓鼠找sugar II 以前做过类似的期望题目 加上最后的树形dp不算太难 还是可以推出来的. 容易发现 当固定起点和终点的时候 可以先固定根 这样就不用分到底是正着走还是倒着走了. 1为根 ...

  4. 仓鼠找sugar II

    题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a,是任意的)他的基友卧室(b,还是任意的).(注 ...

  5. P3412 仓鼠找sugar II

    思路 挺神的概率期望.. 好吧是我太弱了,完全没有往那里想 注意期望是具有线性性的,一条路径的期望可以变成每条边的期望求和 概率是某件事发生的可能性,期望是某件事确定发生的代价 首先没有终点的条件并不 ...

  6. P3398 仓鼠找sugar

    P3398 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...

  7. 【Luogu3398】仓鼠找sugar(树链剖分)

    [Luogu3398]仓鼠找sugar(树链剖分) 题面 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他 ...

  8. 洛谷P3398 仓鼠找sugar [LCA]

    题目传送门 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...

  9. 【洛谷】【lca+结论】P3398 仓鼠找sugar

    [题目描述:] 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室 ...

随机推荐

  1. iperf命令

    iperf命令网络测试 iperf命令是一个网络性能测试工具.iperf可以测试TCP和UDP带宽质量.iperf可以测量最大TCP带宽,具有多种参数和UDP特性.iperf可以报告带宽,延迟抖动和数 ...

  2. Linux中7个用来浏览网页和下载文件的命令

    上一篇文章中,我们提到了rTorrent.wget.cURL.w3m.Elinks等几个有用的工具,很多人回信说还有其它几个类似的工具也值得讨论,所以就有了这篇文章.如果错过了第一部分的讨论,可以通过 ...

  3. PPPoE拨号流程

    PPPoE(Point to Point Protocol over Ethernet,基于以太网的点对点协议)的工作流程包含发现(Discovery)和会话(Session)两个阶段,发现阶段是无状 ...

  4. eclipse快捷注释生成方法

    自动生成方法的注释格式,例如 /*** @param str* @return* @throws ParseException*/ 快捷键是alt+shift+j,将光标放在方法名上,按快捷键.会生成 ...

  5. Json对象与Json字符串互转(4种转换方式)(转)

    1>jQuery插件支持的转换方式: $.parseJSON( jsonstr ); //jQuery.parseJSON(jsonstr),可以将json字符串转换成json对象  2> ...

  6. 彻底解决Yii2中网页刷新时验证码不刷新的问题

    修改vendor/yiisoft/yii2/captcha/CaptchaValidator.php这个文件就可以了,修改的地方见下图: 总结 归根到底,是因为yii2在渲染网页的时候,会先输出js验 ...

  7. PHP 支持加解密的函数

    function encrypt($string,$operation,$key=''){ $key=md5($key); $key_length=strlen($key); $string=$ope ...

  8. c++ 如何获取多线程的返回值?

    // Console.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <stdlib.h> #include ...

  9. SpringMVC实现返回不同视图

    在spring mvc中应该怎么实现可以返回不同结果呢,其实就是配置多个视图解析器,最常用的就是freemaker视图解析器,有时候要又要同时又jsp,html,那么应该怎么配置呢? 具体配置如下 & ...

  10. mysql主键,外键,索引

    主键 唯一而非空,只能有一个 作用: 1.唯一的标识一行  2.作为一个可以被外键有效引用的对象  3.保证数据完整性 设计原则: 1. 主键应当是对用户没有意义的.如果用户看到了一个表示多对多关系的 ...