POJ_1269_Intersecting Lines_求直线交点
POJ_1269_Intersecting Lines_求直线交点
Description
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.
Input
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".
Sample Input
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
我们都知道一双独特的点在平面上定义了一条线,一条线在一个平面相交的三种方法:
1)没有交集,因为它们是平行的,
2)相交于一条线,因为他们是在另一个(即他们是相同的线),
3)相交于一点。在这个问题中,你将使用你的代数知识来创建一个程序来决定两条线的交点。
你的程序将会反复地读入四个点,在xy平面上定义两条直线,并确定直线的交点和位置。这个问题所要求的所有数字都是合理的,比如在-1000和1000之间。
先用两条直线的向量的叉积判断是否平行,然后用一个端点向另外一条直线的两个端点连线求叉积判断是否重合。
都不是就直接求两直线的交点,用平行四边形的面积求。 代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef double f2;
#define eps 1e-6
f2 fabs(f2 x) {return x>0?x:-x;}
struct Point {
f2 x,y;
Point() {}
Point(f2 x_,f2 y_):
x(x_),y(y_) {}
Point operator + (const Point &p) const {return Point(x+p.x,y+p.y);}
Point operator - (const Point &p) const {return Point(x-p.x,y-p.y);}
Point operator * (f2 rate) const {return Point(x*rate,y*rate);}
void rd() {scanf("%lf%lf",&x,&y);}
};
typedef Point Vector;
f2 dot(const Point &p1,const Point &p2) {return p1.x*p2.x+p1.y*p2.y;}
f2 cross(const Point &p1,const Point &p2) {return p1.x*p2.y-p1.y*p2.x;}
struct Line {
Point p;
Vector v;
Line() {}
Line(const Point &p_,const Vector &v_):
p(p_),v(v_) {}
};
Point get_point(const Line &l1,const Line &l2) {
Vector u=l1.p-l2.p;
f2 t=cross(l2.v,u)/cross(l1.v,l2.v);
return l1.p+l1.v*t;
}
void solve() {
Point a1,a2,b1,b2;
a1.rd();a2.rd();b1.rd();b2.rd();
Vector A=a1-a2,B=b1-b2;
if(fabs(cross(A,B))<eps) {
if(fabs(cross(a1-b1,a2-b1))<eps&&fabs(cross(a1-b2,a2-b2))<eps) puts("LINE");
else puts("NONE");
}else {
Point ans=get_point(Line(a2,A),Line(b2,B));
printf("POINT %.2lf %.2lf\n",ans.x,ans.y);
}
}
int main() {
puts("INTERSECTING LINES OUTPUT");
int n;
scanf("%d",&n);
while(n--) {
solve();
}
puts("END OF OUTPUT");
}
POJ_1269_Intersecting Lines_求直线交点的更多相关文章
- UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)
Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- poj 1269 Intersecting Lines——叉积求直线交点坐标
题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...
- [java作业]Fan、求直线交点、Triangle2D、选课
public class Fan { public static void main(String[] args) { Fan fan1 = new Fan(), fan2 = new Fan(); ...
- poj1269 (叉积求直线的交点)
题目链接:https://vjudge.net/problem/POJ-1269 题意:给出4个顶点,表示两条直线,求这两条直线的相交情况,重合输出LINE,平行输出NONE,相交于一点输出该点的距离 ...
- 谈谈"求线段交点"的几种算法(js实现,完整版)
"求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法总结一下, 希望对大家有所帮助. ...
- 计算几何——直线交点poj1269
求直线交点还是要推一个公式的.. 见博客https://blog.csdn.net/u013050857/article/details/40923789 还要学一下向量的定点比分法 另外poj精度好 ...
- MATLAB—求直线或者线段之间的交点坐标
function CrossPoint( ) %% 求两条直线的交点坐标 x1 = [7.8 8]; y1 = [0.96 0.94]; %line2 x2 = [8.25 8.25]; y2 = [ ...
- hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)
Area Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
随机推荐
- 关于jasperreport对应java打印机的解决方案
对于jasperreport打印这个功能,遇到了一大堆问题,也只能一点一点解决我: 1.现在我用的是jasperreport.jar是4.6版本. (1).因为网上查到:6.0以上版本已经不再支持ja ...
- JQuery DOM操作 、属性和CSS样式操作、其他函数
DOM操作 1.在div1内部最后追加一个节点 $("#div1").append("<img src='../01-HTML基本标签/img/Male.gif'/ ...
- ffmpeg 的 tbr tbc 和 tbn的意义
tbn = the time base in AVStream that has come from the container tbc = the time base in AVCodecConte ...
- MinGW安装与使用简介
MinGW 安装与使用简介 安装方法:其实很简单,如下: Step one: 到这里下载 MinGW, 网速慢的话可能打不开, 是个外国网站 (上面的网站镜像可能 出了点问题 , 有的东西下载下来却不 ...
- 一篇文章带你了解Cloud Native
背景 Cloud Native表面看起来比较容易理解,但是细思好像又有些模糊不清:Cloud Native和Cloud关系是啥?它用来解决什么问题?它是一个新技术还是一个新的方法?什么样的APP符合“ ...
- require './ex25' can't load such file
require './ex25' can't load such file 在练习learn ruby the hard way时候,第25题,发生了一下错误 LoadError: cannot lo ...
- PHP合并数组的三种方法的分析与比较
常用的合并数组的方法有三种:array_merge().array_merge_recursive().+,下面一个一个介绍 array_merge() 此函数合并一个或多个数组,当输入的数组中有相同 ...
- memcached command
http://lzone.de/cheat-sheet/memcached memcached Cheat Sheet Telnet Interface How To Connect Use &quo ...
- Spring JTA multiple resource transactions in Tomcat with Atomikos example
http://www.byteslounge.com/tutorials/spring-jta-multiple-resource-transactions-in-tomcat-with-atomik ...
- JAVA未来前景还能持续多久
有很多人一直在说JAVA现在已经饱和了,已经没有必要学Java,程序员已经是严重过剩,行业人才竞争状况更是恶性的之类的云云.现实真是这样嘛? Java目前现状 首先,Java的应用可以说是无处不在,从 ...