BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
Description
.jpg)
Input
Output
Sample Input
1
0
4
INPUT DETAILS:
Three cows, with starting numbers 1, 0, and 4; four repetitions of the
encryption algorithm.
Sample Output
25
29
OUTPUT DETAILS:
The following is a table of the cows' numbers for each turn:
Cows' numbers
Turn Cow1 Cow2 Cow3
0 1 0 4
1 4 5 1
2 6 5 9
3 14 15 11
4 26 25 29
HINT
N<=50000
分析:
设初始时总和为$sum$,发现每次操作后$sum$会乘上$(n-1)$。
对于第$i$个奶牛,从$(\begin{matrix}c[i]&sum-c[i]\end{matrix})$ 到$(\begin{matrix}sum-c[i]&sum*(n-1)-sum+c[i]=sum*(n-2)+c[i]\end{matrix})$
得到转移矩阵$(\begin{matrix} 0&n-1\\1&n-2 \end{matrix})$
然后矩阵乘法即可。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=98765431,sum;
int n,t,a[50050];
struct Mat {
ll v[2][2];
Mat() { memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
(re.v[i][j]+=v[i][k]*x.v[k][j])%=mod;
}
}
}
return re;
}
};
Mat qp(Mat x,int y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
scanf("%d%d",&n,&t);
Mat x; x.v[0][0]=0; x.v[0][1]=n-1; x.v[1][0]=1; x.v[1][1]=n-2;
Mat T=qp(x,t);
int i;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
sum+=a[i];
}
for(i=1;i<=n;i++) {
printf("%lld\n",(a[i]*T.v[0][0]%mod+(sum-a[i])%mod*T.v[1][0]%mod)%mod);
}
}
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法的更多相关文章
- 1712: [Usaco2007 China]Summing Sums 加密
1712: [Usaco2007 China]Summing Sums 加密 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 338 Solved: 12 ...
- bzoj 1712: [Usaco2007 China]Summing Sums 加密
1712: [Usaco2007 China]Summing Sums 加密 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她 ...
- 【bzoj1712】[Usaco2007 China]Summing Sums 加密 矩阵乘法
题目描述 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛的加密方法.由于她们并不是经验十足,她们的加密方法非常简单:第i只奶牛掌握着密码的第i个数字,起始的时候是Ci(0≤C ...
- BZOJ1712 : [Usaco2007 China]Summing Sums 加密
设$s[i]$为进行$i$次加密后所有奶牛数字的和,有$s[i]=(n-1)s[i-1]$. 设$c[i]$为某头固定的奶牛进行$i$次加密后的数字, 若$i$为奇数,有: \[c[i]=((1-n) ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...
随机推荐
- svn 不能添加.a文件
1.打开终端输入 open ~/.subversion/ 2.双击打开config文件 3.修改如下两行 # global-ignores = *.o *.lo *.la *.al .libs ...
- mysql海量数据的优化
转载:https://www.cnblogs.com/trying/archive/2013/08/15/3259126.html 下面是一部分比较重要的建议:1.选择正确的存储引擎以 MySQL为例 ...
- BAT面试技巧
很多人都质疑面试前去google一下面试题,是否有用....其实真实情况往往是这样:前台告诉经理,有个面试者来了,经理一拍头:啊!差点忘了!拿起电话:小谢,你有空吧,帮忙面个试! 小谢答应后,goog ...
- 编程题:利用for循环打印 9*9 表?
利用for循环打印 9*9 表? 1*1=1 1*2=2 2*2=4 1*3=3 2*3=6 3*3=9 1*4=4 2*4=8 3*4=12 4*4=16 1*5=5 2*5=10 ...
- access窗体主体居中
Private Sub Form_Load()DoCmd.Echo False Dim x, y As IntegerDoCmd.Maximizex = Me.WindowWidthy = Me.Wi ...
- 安装VirtualBox后 不能选择64bit的系统
之前在台式机上安装VirtualBox,一切OK,能够安装64位的任何版本iso包今天在hp笔记本上安装,安装VirtualBox完毕后,只能选择32位的iso版本. 而我目前只有一个linux64b ...
- Day9 进程同步锁 进程队列 进程池 生产消费模型 进程池 paramike模块
进程同步锁: 当运行程序的时候,有可能你的程序同时开多个进程,开进程的时候会将多个执行结果打印出来,这样的话打印的信息都是错乱的,怎么保证打印信息是有序的呢? 其实也就是相当于让进程独享资源. fro ...
- RA layer request failed
新整的Eclipse环境出现这个问题,细化内容是不能connect,后来想起切换Eclipse底层库的事情,然后打开Eclipse的SVN设置.把SVN Client借口由JavaHL改为PureJa ...
- 五分钟学会centos配置gitlab
下载gitlab 亲测: centos6.5 安装依赖包: : yum install curl policycoreutils policycoreutils-python openssh-serv ...
- JAVA小记 (1)
JVM: Java虚拟机 JVM个数取决于同时执行的程序个数 JDK:JAVA 开发工具包 Java利用JVM实行跨平台 JRE:Java运行环境 JavaSE:企业版 GC:垃圾回收机制 命名规范 ...