There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
  3. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  4. Topological sort could also be done via BFS.

这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:

解法一:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};

下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:

解法二:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/207

类似题目:

Minimum Height Trees

Course Schedule II

Course Schedule III

Graph Valid Tree

参考资料:

https://leetcode.com/problems/course-schedule/

https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution

https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java

https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Course Schedule 课程清单的更多相关文章

  1. [LeetCode] 207. Course Schedule 课程清单

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  2. [LeetCode] Course Schedule II 课程清单之二

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  3. [LeetCode] Course Schedule III 课程清单之三

    There are n different online courses numbered from 1 to n. Each course has some duration(course leng ...

  4. [LeetCode] 210. Course Schedule II 课程清单之二

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  5. [LeetCode] 207. Course Schedule 课程安排

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  6. 【LeetCode】1462. 课程安排 IV Course Schedule IV (Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 日期 题目地址:https://leetcod ...

  7. LeetCode Course Schedule II

    原题链接在这里:https://leetcode.com/problems/course-schedule-ii/ 题目: There are a total of n courses you hav ...

  8. [LeetCode] Course Schedule I (207) & II (210) 解题思路

    207. Course Schedule There are a total of n courses you have to take, labeled from 0 to n - 1. Some ...

  9. LeetCode - Course Schedule 解题报告

    以前从来没有写过解题报告,只是看到大肥羊河delta写过不少.最近想把写博客的节奏给带起来,所以就挑一个比较容易的题目练练手. 原题链接 https://leetcode.com/problems/c ...

随机推荐

  1. 学习SpringMVC——国际化+上传+下载

    每个星期一道菜,这个星期也不例外~~~ 一个软件,一个产品,都是一点点开发并完善起来的,功能越来越多,性能越来越强,用户体验越来越好……这每个指标的提高都需要切切实实的做点东西出来,好比,你的这个产品 ...

  2. DotNet程序配置文件

    在实际的项目开发中,对于项目的相关信息的配置较多,在.NET项目中,我们较多的将程序的相关配置直接存储的.config文件中,例如web.config和app.config. .NET中配置文件分为两 ...

  3. 基于傅里叶变换和PyQt4开发一个简单的频率计数器

    小学期的<信号与系统>课,要求写一个频率计数器,下面是我个人理解的频率计数 傅里叶变换的代码: # coding=utf-8 import numpy as np from scipy.i ...

  4. pwm 占空比 频率可调的脉冲发生器

    module xuanpin #(parameter N=25)(clk,clr,key_in_f,key_in_z,f_out);input clk,clr,key_in_f,key_in_z;ou ...

  5. hdu-2444-二分图判定+最大分配

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  6. Java编程里的类和对象

    像我们搞计算机这块的,都知道这么一件事,当前的计算机编程语言主要分为两大块,一为面向过程,二为面向对象.Java就是一门纯面向对象的语言.学习了一个月左右的Java,在下对于Java当中的类和对象有了 ...

  7. JAVA的序列化和持久化的区别与联系

      持久化(Persistence) 即把数据(如内存中的对象)保存到可永久保存的存储设备中(如磁盘).持久化的主要应用是将内存中的对象存储在关系型的数据库中,当然也可以存储在磁盘文件中.XML数据文 ...

  8. 【原】Bootstrap+Knockout.JS+ASP.Net MVC3+PetaPOCO实现CRUD操作

    1.需求: 1.1)页面要美观大气 1.2)前端代码要简洁清晰,要用MVC或是MVVM框架 1.3)服务端要用MVC框架,要Rest风格 1.4)数据访问要用ORM 2.效果: 2.1)列表 2.2) ...

  9. SAP GUI的配置文件

    GUI是SAP系统最常用的客户端,在一台客户机上,利用GUI可以连接多套SAP系统(连接方法参见<客户端连接配置(SAP GUI 710)>),也可以设置多个快捷方式登录(参见<用快 ...

  10. YYStock开源----iOS股票K线绘制第二版

    新的股票绘制粗来啦,欢迎围观star的说(*^__^*) 嘻嘻-- 捏合功能也准备完善了 Github:https://github.com/yate1996/YYStock 长按分时图+五档图 分时 ...