[LeetCode] Course Schedule 课程清单
There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Note:
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
- This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:
解法一:
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};
下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:
解法二:
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/207
类似题目:
参考资料:
https://leetcode.com/problems/course-schedule/
https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution
https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Course Schedule 课程清单的更多相关文章
- [LeetCode] 207. Course Schedule 课程清单
There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...
- [LeetCode] Course Schedule II 课程清单之二
There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...
- [LeetCode] Course Schedule III 课程清单之三
There are n different online courses numbered from 1 to n. Each course has some duration(course leng ...
- [LeetCode] 210. Course Schedule II 课程清单之二
There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...
- [LeetCode] 207. Course Schedule 课程安排
There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...
- 【LeetCode】1462. 课程安排 IV Course Schedule IV (Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 日期 题目地址:https://leetcod ...
- LeetCode Course Schedule II
原题链接在这里:https://leetcode.com/problems/course-schedule-ii/ 题目: There are a total of n courses you hav ...
- [LeetCode] Course Schedule I (207) & II (210) 解题思路
207. Course Schedule There are a total of n courses you have to take, labeled from 0 to n - 1. Some ...
- LeetCode - Course Schedule 解题报告
以前从来没有写过解题报告,只是看到大肥羊河delta写过不少.最近想把写博客的节奏给带起来,所以就挑一个比较容易的题目练练手. 原题链接 https://leetcode.com/problems/c ...
随机推荐
- 使用ViewPager实现自动轮播
很多APP中都实现了类似引导页的自动轮播,不由得想到昨天的引导页上修改一下代码实现轮播. 其实大体上只需要添加一个线程循环执行就可以了. 项目已同步至:https://github.com/nanch ...
- Javascript中关于cookie的那些事儿
Javascript-cookie 什么是cookie? 指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密).简单点来说就是:浏览器缓存. cookie由什 ...
- 判断IEnumerable<T>集合中是否包含有T对象
比如,有角色集合中,只有用户创建有角色,才出现“分配”铵钮.反之,隐藏. IEnumerable有一个方法,叫Any:
- 【python常用函数1】
## 1 ##获取输入值 a = raw_input("请输入:") if a == str(1): print "success" else: print & ...
- Hibernate全套增删改查+分页
1.创建一个web工程 2.导入jar包 3.创建Student表 4.创建实体类 package com.entity; public class Student { private Integer ...
- ASP.NET CORE配置信息
做个笔记,原文链接 除了应用 IOptions<T> .Value的方式对配置信息进行全局注册外可以应用的另一个微软给出的组件,需要依赖两个包 Microsoft.Extensions.C ...
- PHP flush()与ob_flush()的区别
buffer ---- flush()buffer是一个内存地址空间,Linux系统默认大小一般为4096(1kb),即一个内存页.主要用于存储速度不同步的设备或者优先级不同的 设备之间传办理数据的区 ...
- shiro在springmvc里面的集成使用【转】
<dependency> <groupId>commons-collections</groupId> <artifactId>commons-coll ...
- 【JS基础】
(function(){-})() ( function (){-} () ) 立即执行函数 在函数体后面加括号就能立即调用,其中这个函数必须是函数表达式,不能是函数声明 函数声明:function ...
- CSS3之3d变换与关键帧
3d变换是在transform基础上实现的 transform-style:preserve-3d; 建立3d空间 perspective:; 景深(设置用户看的距离) perspective-ori ...