bzoj 3812: 主旋律 [容斥原理 状压DP]
3812: 主旋律
题意:一张有向图,求它的生成子图是强连通图的个数。\(n \le 15\)
先说一个比较暴力的做法。
终于知道n个点图的是DAG的生成子图个数怎么求了。
暴力枚举哪些点是一个scc,然后缩点,枚举入度为0的点,容斥原理dp DAG个数
\]
巧妙的做法是直接枚举缩点入度为0的点(即那些scc有哪些点)
\(f(S)\) S的生成子图是强连通的个数
\(g(S)\) S拆成奇数个scc - S拆成偶数个scc. 原因是上面那个DP.
\(h(S)\) 诱导子图S的边数
g(S) = f(S) - \sum_{T \subset S, T \neq \varnothing,T\neq S,p\in T}f(T)g(S-T)
\]
注意要把拆成一个单独拿出来,因为更新f用到的g不能是拆成一个!
感觉很巧妙,利用g,相当于把原来不同枚举方案中的DP一块做了!
复杂度\(O(3^n)\)
代码中有一些实现技巧。特别注意怎样固定p在T中
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<16) + 5, mo = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m, u, v, f[N], g[N], h[N], one[N], w[N], ins[N], outs[N];
ll mi[N];
int main() {
//freopen("in", "r", stdin);
n = read(); m = read();
for(int i=1; i<=m; i++) {
u = 1 << (read()-1); v = 1 << (read()-1);
outs[u] |= v; ins[v] |= u;
}
mi[0] = 1;
for(int i=1; i<=m; i++) mi[i] = mi[i-1] * 2 %mo;
for(int s = 1; s < 1<<n; s++) one[s] = 1 + one[s ^ (s & -s)];
for(int s = 1; s < 1<<n; s++) {
int p = s & -s, ns = s ^ p;
for(int t = ns; t; t = (t-1) & ns)
g[s] = (g[s] - (ll) f[s ^ t] * g[t]) %mo;
h[s] = h[ns] + one[ins[p] & ns] + one[outs[p] & ns];
f[s] = mi[h[s]];
for(int t = s; t; t = (t-1) & s) {
int p = (s^t) & -(s^t);
if(t == s) w[t] = 0;
else w[t] = w[t ^ p] - one[outs[p] & (s^t)] + one[ins[p] & t];
f[s] = (f[s] - (ll) g[t] * mi[w[t] + h[s^t]]) %mo;
}
if(f[s] < 0) f[s] += mo;
g[s] = (g[s] + f[s]) %mo;
}
printf("%d", f[(1<<n) - 1]);
}
bzoj 3812: 主旋律 [容斥原理 状压DP]的更多相关文章
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- bzoj 2669 题解(状压dp+搜索+容斥原理)
这题太难了...看了30篇题解才整明白到底咋回事... 核心思想:状压dp+搜索+容斥 首先我们分析一下,对于一个4*7的棋盘,低点的个数至多只有8个(可以数一数) 这样的话,我们可以进行一个状压,把 ...
- HDU 4336 容斥原理 || 状压DP
状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示 ...
- BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)
(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...
- BZOJ 1087 题解【状压DP】
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3112 Solved: 1816[Submit][ ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- BZOJ 4057: [Cerc2012]Kingdoms( 状压dp )
状压dp.... 我已开始用递归结果就 TLE 了... 不科学啊...我dp基本上都是用递归的..我只好改成递推 , 刷表法 将全部公司用二进制表示 , 压成一个数 . 0 表示破产 , 1 表示没 ...
- BZOJ 2073: [POI2004]PRZ( 状压dp )
早上这道题没调完就去玩NOI网络同步赛了.... 状压dp , dp( s ) 表示 s 状态下所用的最短时间 , 转移就直接暴力枚举子集 . 可以先预处理出每个状态下的重量和时间的信息 . 复杂度是 ...
- #186 path(容斥原理+状压dp+NTT)
首先只有一份图时显然可以状压dp,即f[S][i]表示S子集的哈密顿路以i为终点的方案数,枚举下个点转移. 考虑容斥,我们枚举至少有多少条原图中存在的边(即不合法边)被选进了哈密顿路,统计出这个情况下 ...
随机推荐
- BZOJ 1509: [NOI2003]逃学的小孩
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1509 直接求出树的直径,枚举每个点更新一遍答案. #include<cstring> ...
- 2017ecjtu-summer training # 11 POJ 2492
A Bug's Life Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 38280 Accepted: 12452 D ...
- hdu_1358Period(kmp找循环前缀)
题目在这儿 Period Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- Stars(树状数组)
http://acm.hdu.edu.cn/showproblem.php?pid=1541 Stars Time Limit: 2000/1000 MS (Java/Others) Memor ...
- js onclick传递 对象
在html onclick中如果参数直接传递一个参数js会报错. 如果想要onclick传递参数需要这么做: var user = {id:1, name:'hk'}; var ele = '< ...
- 如何在SecureCRT中给linux上传和下载文件 安装redis
首先建立文件 /download sz和rz命令无法用.则用以下1.和2.3步骤 需要上传或者下载,需要使用rz和sz命令.如果linux上没有这两个命令工具,则需要先安装.可以使用yum安装.运 ...
- Java数据持久层框架 MyBatis之API学习四(xml配置文件详解)
摘录网址: http://blog.csdn.net/u010107350/article/details/51292500 对于MyBatis的学习而言,最好去MyBatis的官方文档:http:/ ...
- mybatis-XML配置文件
<?xml version="1.0" encoding="UTF-8" ?><!--plugins在配置文件中的位置必须要符合要求,否则会报 ...
- set&enum小结(database)
今天发现mysql中有set这种数据类型,工作的业务中也使用到了.网上查阅资料后,小结一下 先总结一下两者的分别 set和enum类似表单中的多选和单选,set和enum在数据库内部是用整数表示的,显 ...
- xml格式字符串转为Map
import org.dom4j.Document;import org.dom4j.DocumentException;import org.dom4j.Element;import org.dom ...