「JXOI 2018」 排序问题
题目链接
\(Solution\)
\(50\ pts\)
我们来看一下题目,可以很容易的写出来答案的式子:
\]
\(a_1,a_2,...,a_{tot}\)为\(n+m\)个数中不同的数出现的个数
那么\(50\)便很好想了.
我们现在要求的是期望轮数最多,所以\({a_1!a_2!...a_{tot}!}\)要尽量小
所以我们可以贪心求解,每次找出\([l,r]\)中出现次数最少的数,找\(m\)次即可,这用个堆维护一下就好了
\(100 \ pts\)
我们还是需要\({a_1!a_2!...a_{tot}!}\)尽量小
于是我们可以二分出\(a_1,a_2,...,a_{tot}\)中的最小值的最大值,我们令这个值为\(ans\)
那么我们现在就可以知道了\(a_1,a_2,...,a_{tot}\)的分布
对于\(>ans\)的或不在[l,r]这个区间内的,直接将他们阶乘乘起来即可.
对于[l,r]内个数\(<=ans\)的,进行如下操作:
算出将[l,r]内个数\(<=ans\)的边成\(ans\)后剩下\(m\)个数还剩下几个.我们令这个数为\(c\),[l,r]内去见个数\(<=ans\)的数有\(k\)个
我们将这\(c\)个数分成不同的\(c\)个插入数列即可.
所以现在的个数为:
\(c\) 个个数为 \(ans+1\)
\(k-c\)个个数为 \(ans\)
直接快速幂求,最后吧求的乘起来,用\((n+m)!\)除他就好了.
\(Code\)
#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int mod=998244353;
inline int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
int n,m,tot,a[2000010],sum[2000010];
inline int check(int x,int len){
int ans=0,flag=0;
for(int i=1;i<=tot;i++){
if(sum[i]>x)
break;
ans+=sum[i],flag=i;
}
int k=(len-tot+flag);
return m-(k*x-ans);
}
inline int ksm(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=ans*a%mod;
a=a*a%mod,b>>=1;
}
return ans;
}
int jc[20000010];
main(){
int T=read(),l,r;
jc[0]=1;
for(int i=1;i<=10200000;i++)
jc[i]=jc[i-1]*i%mod;
while(T--){
n=read(),m=read(),l=read(),r=read(),tot=0;
for(int i=1;i<=n;i++)
a[i]=read();
sort(a+1,a+1+n);
int p=0,js=1;
a[n+1]=-2147483647;
for(int i=1;i<=n+1;i++){
if(a[i]!=a[i+1]){
if(a[i]<=r&&a[i]>=l)
sum[++tot]=i-p;
else js=js*jc[(i-p)]%mod;
p=i;
}
}
sort(sum+1,sum+1+tot);
int L=0,R=m+n,maxx=0;
while(L<=R){
int mid=(L+R)>>1;
if(check(mid,(r-l+1))>=0)
L=mid+1,maxx=max(maxx,mid);
else R=mid-1;
}
int ans=0,flag=0,len=(r-l+1);
for(int i=1;i<=tot;i++) {
if(sum[i]>maxx) break;
ans+=sum[i],flag=i;
}
int k=(len-tot+flag),c=m-(k*maxx-ans);
for(int i=flag+1;i<=tot;i++) js=js*jc[sum[i]]%mod;
js=js*ksm(jc[maxx+1],c)%mod,js=js*ksm(jc[maxx],k-c)%mod;
printf("%lld\n",jc[n+m]*ksm(js,mod-2)%mod);
}
return 0;
}
「JXOI 2018」 排序问题的更多相关文章
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...
- 「TJOI 2018」教科书般的亵渎
「TJOI 2018」教科书般的亵渎 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为 \(a_i\) ,且每个怪物血量均不相同, 小豆手里有无限张"亵渎" ...
- 「TJOI 2018」游园会 Party
「TJOI 2018」游园会 Party 题目描述 小豆参加了 \(NOI\) 的游园会,会场上每完成一个项目就会获得一个奖章,奖章只会是 \(N, O, I\) 的字样. 在会场上他收集到了 \(K ...
- 「SDOI 2018」反回文串
题目大意: 求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量. 题解: 这题是D1里最神的吧 考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串. 但是显然这样计算会算重. ...
- 「WC 2018」州区划分
题目大意: 给一个无向图$G(V,E)$满足$|V|<=21$,对于某一种将$G(V,E)$划分为k个的有序集合方案,若每一个子集$G_i(V_i,E_i)$,$E_i=\{(x,y)|x\in ...
随机推荐
- Java的SSH网站
1.框架 strusts2 + Hibernate + spring 2.图片 图1-1 网站结构 图1-2 java代码结构 3.源代码 3.1 UserAction.java package co ...
- C#获取类里面的所有的方法名称
Type trypInfo = typeof(Program);// Program为类名//获得方法名string str = "包括的方法名列表:\r\n"; MethodIn ...
- Mysql事务及行级锁
事务隔离级别 数据库事务隔离级别,只是针对一个事务能不能读取其它事务的中间结果. Read Uncommitted (读取未提交内容) 在该隔离级别,所有事务都可以看到其他未提交事务的执行结果.本隔离 ...
- ios学习杂记
commond + alt + enter Xcode分屏.拖动xib连线
- 100. Same Tree同样的树
[抄题]: Given two binary trees, write a function to check if they are the same or not. Two binary tree ...
- SSM项目与Shiro项目的整合(单体式项目)
1.项目的包结构: 2.jar包,配置文件及工具类 2.1pom.xml的配置 <?xml version="1.0" encoding="UTF-8"? ...
- Openssl ec命令
一.简介 椭圆曲线密钥处理工具 二.语法 openssl ec [-inform PEM|DER] [-outform PEM|DER] [-in filename] [-out filename] ...
- p4364 [九省联考2018]IIIDX
传送门 分析 我们先考虑如果所有数都不相同我们应该怎么办 我们可以直接贪心的在每个点放可行的最大权值 但是题目要求可以有相同的数 我们可以考虑每次让当前节点可发且尽量大的同时给兄弟节点留的数尽量大 我 ...
- linux环境下搭建osm_web服务器三(Openlays和slippymap):
Openlays和slippymap 上一步,我们已经有了自己的地图瓦片服务器,现在,开始实现SlippyMap啦! <1>下载释放OpenLayers到 www文件夹 SlippyMap ...
- ubuntu 16.04安装ceph集群(双节点)
Ceph是一个分布式存储,可以提供对象存储.块存储和文件存储,其中对象存储和块存储可以很好地和各大云平台集成.一个Ceph集群中有Monitor节点.MDS节点(可选,用于文件存储).至少两个OSD守 ...