Spark 2.2 DataFrame的一些算子操作
Spark Session中的DataFrame类似于一张关系型数据表。在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现。
可以参考,Scala提供的DataFrame API。本文中的代码基于Spark-2.2的文档实现。
一、DataFrame对象的生成
Spark-SQL可以以其他RDD对象、parquet文件、json文件、Hive表,以及通过JDBC连接到其他关系型数据库作为数据源来生成DataFrame对象。本文将以MySQL数据库为数据源,生成DataFrame对象后进行相关的DataFame之上的操作。
文中生成DataFrame的代码如下:
val ss = SparkSession.builder()
.appName("ta")
.master("local[4]")
.config("spark.mongodb.input.uri","mongodb://username:password@192.168.1.3:27017/log.")
.config("spark.mongodb.output.uri","mongodb://username:password@192.168.1.3:27017/log")
.getOrCreate()
1.读取mysql数据
val url = "jdbc:mysql://m000:3306/test"
val jdbcDF = ss.read.format( "jdbc" ).options(Map( "url" -> url,"user" -> "xxx","password" -> "xxx", "dbtable" -> "xxx" )).load()
2.读取SqlServer数据
val sqlUrl="jdbc:sqlserver://192.168.1.3:1433;DatabaseName=mytable;username=xxxx;password=xxx"
val data2DF = ss.read.format("jdbc").options( Map("url" -> sqlsUrl, "dbtable" -> "TableName")).load()
3.读取MongoDB数据
val data1DF = MongoSpark.load(ss, ReadConfig(Map("collection" -> "TableName"), Some(ReadConfig(ss))))
1、show:展示数据
以表格的形式在输出中展示jdbcDF中的数据,类似于select * from spark_sql_test的功能。
show方法有四种调用方式,分别为,
(1)show
只显示前20条记录。且过长的字符串会被截取
示例:jdbcDF.show
(2)show(numRows: Int)
显示numRows条
示例:jdbcDF.show(3)
(3)show(truncate: Boolean)
是否截取20个字符,默认为true。
示例:jdbcDF.show(false)
(4)show(numRows: Int, truncate: Int)
显示记录条数,以及截取字符个数,为0时表示不截取
示例:jdbcDF.show(3, 0)
2、collect:获取所有数据到数组
不同于前面的show方法,这里的collect方法会将jdbcDF中的所有数据都获取到,并返回一个Array对象。
jdbcDF.collect()
结果数组包含了jdbcDF的每一条记录,每一条记录由一个GenericRowWithSchema对象来表示,可以存储字段名及字段值。
3、collectAsList:获取所有数据到List
功能和collect类似,只不过将返回结构变成了List对象,使用方法如下
jdbcDF.collectAsList()
4、describe(cols: String*):获取指定字段的统计信息
这个方法可以动态的传入一个或多个String类型的字段名,结果仍然为DataFrame对象,用于统计数值类型字段的统计值,比如count, mean, stddev, min, max等。
使用方法如下,其中c1字段为字符类型,c2字段为整型,c4字段为浮点型
jdbcDF .describe("c1" , "c2", "c4" ).show()
结果如下:

5、first, head, take, takeAsList:获取若干行记录
这里列出的四个方法比较类似,其中
(1)first获取第一行记录
(2)head获取第一行记录,head(n: Int)获取前n行记录
(3)take(n: Int)获取前n行数据
(4)takeAsList(n: Int)获取前n行数据,并以List的形式展现
以Row或者Array[Row]的形式返回一行或多行数据。first和head功能相同。
take和takeAsList方法会将获得到的数据返回到Driver端,所以,使用这两个方法时需要注意数据量,以免Driver发生OutOfMemoryError
使用和结果略。
二、DataFrame对象上的条件查询和join等操作
以下返回为DataFrame类型的方法,可以连续调用。
1、where条件相关
(1)where(conditionExpr: String):SQL语言中where关键字后的条件
传入筛选条件表达式,可以用and和or。得到DataFrame类型的返回结果,
示例:
jdbcDF .where("id = 1 or c1 = 'b'" ).show()

(2)filter:根据字段进行筛选
传入筛选条件表达式,得到DataFrame类型的返回结果。和where使用条件相同
示例:jdbcDF .filter("id = 1 or c1 = 'b'" ).show()

2、查询指定字段
(1)select:获取指定字段值
根据传入的String类型字段名,获取指定字段的值,以DataFrame类型返回
示例:
jdbcDF.select( "id" , "c3" )
还有一个重载的select方法,不是传入String类型参数,而是传入Column类型参数。可以实现select id, id+1 from test这种逻辑。
jdbcDF.select(jdbcDF( "id" ), jdbcDF( "id") + ).show( false)

能得到Column类型的方法是apply以及col方法,一般用apply方法更简便。
(2)selectExpr:可以对指定字段进行特殊处理
可以直接对指定字段调用UDF函数,或者指定别名等。传入String类型参数,得到DataFrame对象。
示例,查询id字段,c3字段取别名time,c4字段四舍五入:
jdbcDF .selectExpr("id" , "c3 as time" , "round(c4)" ).show(false)

(3)col:获取指定字段
只能获取一个字段,返回对象为Column类型。
val idCol = jdbcDF.col(“id”)
(4)apply:获取指定字段
只能获取一个字段,返回对象为Column类型
示例:
val idCol1 = jdbcDF.apply("id")
val idCol2 = jdbcDF("id")
(5)drop:去除指定字段,保留其他字段
返回一个新的DataFrame对象,其中不包含去除的字段,一次只能去除一个字段。
示例:
jdbcDF.drop("id")
jdbcDF.drop(jdbcDF("id"))
3、limit
limit方法获取指定DataFrame的前n行记录,得到一个新的DataFrame对象。和take与head不同的是,limit方法不是Action操作。
jdbcDF.limit()
、order by
()orderBy和sort:按指定字段排序,默认为升序
示例1,按指定字段排序。加个-表示降序排序。sort和orderBy使用方法相同
jdbcDF.orderBy(- jdbcDF("c4")).show(false) 只能对数字类型和日期类型生效
// 或者
jdbcDF.orderBy(jdbcDF("c4").desc).show(false)

()sortWithinPartitions
和上面的sort方法功能类似,区别在于sortWithinPartitions方法返回的是按Partition排好序的DataFrame对象。
5、group by
(1)groupBy:根据字段进行group by操作
groupBy方法有两种调用方式,可以传入String类型的字段名,也可传入Column类型的对象。
使用方法如下,
jdbcDF .groupBy("c1" )
jdbcDF.groupBy( jdbcDF( "c1"))
()cube和rollup:group by的扩展
功能类似于SQL中的group by cube/rollup
(3)GroupedData对象
该方法得到的是GroupedData类型对象,在GroupedData的API中提供了group by之后的操作,比如,
max(colNames: String*)方法,获取分组中指定字段或者所有的数字类型字段的最大值,只能作用于数字型字段min(colNames: String*)方法,获取分组中指定字段或者所有的数字类型字段的最小值,只能作用于数字型字段mean(colNames: String*)方法,获取分组中指定字段或者所有的数字类型字段的平均值,只能作用于数字型字段sum(colNames: String*)方法,获取分组中指定字段或者所有的数字类型字段的和值,只能作用于数字型字段count()方法,获取分组中的元素个数运行结果示例:
count

max

这里面比较复杂的是以下两个方法,
agg,pivot该方法和下面介绍的类似,可以用于对指定字段进行聚合操作。
6、distinct
(1)distinct:返回一个不包含重复记录的DataFrame
返回当前DataFrame中不重复的Row记录。该方法和接下来的dropDuplicates()方法不传入指定字段时的结果相同。
示例:
jdbcDF.distinct()

(2)dropDuplicates:根据指定字段去重
根据指定字段去重。类似于select distinct a, b操作
示例:
jdbcDF.dropDuplicates(Seq("c1"))

7、聚合
聚合操作调用的是agg方法,该方法有多种调用方式。一般与groupBy方法配合使用。
以下示例其中最简单直观的一种用法,对id字段求最大值,对c4字段求和
jdbcDF.agg("id" -> "max", "c4" -> "sum")

8、union
union方法:对两个DataFrame进行合并
示例:
jdbcDF.union(jdbcDF.limit())

9、join
重点来了。在SQL语言中用得很多的就是join操作,DataFrame中同样也提供了join的功能。
接下来隆重介绍join方法。在DataFrame中提供了六个重载的join方法。
(1)、笛卡尔积
joinDF1.join(joinDF2)
(2)、using一个字段形式
下面这种join类似于a join b using column1的形式,需要两个DataFrame中有相同的一个列名,
joinDF1.join(joinDF2, "id")
(3)、using多个字段形式
除了上面这种using一个字段的情况外,还可以using多个字段,如下
joinDF1.join(joinDF2, Seq("id", "name"))
(4)、指定join类型
两个DataFrame的join操作有inner, outer,full,full_outer,left, left_outer, right_outer, leftsemi类型。在上面的using多个字段的join情况下,可以写第三个String类型参数,指定join的类型,如下所示
joinDF1.join(joinDF2, Seq("id", "name"), "inner")
(5)、使用Column类型来join
如果不用using模式,灵活指定join字段的话,可以使用如下形式
joinDF1.join(joinDF2 , joinDF1("id" ) === joinDF2( "t1_id"))

(6)、在指定join字段同时指定join类型
如下所示
joinDF1.join(joinDF2 , joinDF1("id" ) === joinDF2( "t1_id"), "inner")
10、获取指定字段统计信息
stat方法可以用于计算指定字段或指定字段之间的统计信息,比如方差,协方差等。这个方法返回一个DataFramesStatFunctions类型对象。
下面代码演示根据c4字段,统计该字段值出现频率在30%以上的内容。在jdbcDF中字段c1的内容为"a, b, a, c, d, b"。其中a和b出现的频率为2 / 6,大于0.3
jdbcDF.stat.freqItems(Seq ("c1") , 0.3).show()

11、获取两个DataFrame中共有的记录
intersect方法可以计算出两个DataFrame中相同的记录,
jdbcDF.intersect(jdbcDF.limit()).show(false)

12、获取一个DataFrame中有另一个DataFrame中没有的记录
示例:
jdbcDF.except(jdbcDF.limit()).show(false)

13、操作字段名
(1)withColumnRenamed:重命名DataFrame中的指定字段名
如果指定的字段名不存在,不进行任何操作。下面示例中将jdbcDF中的id字段重命名为idx。
jdbcDF.withColumnRenamed( "id" , "idx" )

(2)withColumn:往当前DataFrame中新增一列
whtiColumn(colName: String , col: Column)方法根据指定colName往DataFrame中新增一列,如果colName已存在,则会覆盖当前列。
以下代码往jdbcDF中新增一个名为id2的列,
jdbcDF.withColumn("id2", jdbcDF("id")).show( false)

14、行转列
有时候需要根据某个字段内容进行分割,然后生成多行,这时可以使用explode方法
下面代码中,根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示
jdbcDF.explode( "c3" , "c3_" ){time: String => time.split( " " )}

Spark 2.2 DataFrame的一些算子操作的更多相关文章
- spark2.2 DataFrame的一些算子操作
Spark Session中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的Dat ...
- Spark RDD、DataFrame原理及操作详解
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...
- spark结构化数据处理:Spark SQL、DataFrame和Dataset
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但 ...
- Spark入门之DataFrame/DataSet
目录 Part I. Gentle Overview of Big Data and Spark Overview 1.基本架构 2.基本概念 3.例子(可跳过) Spark工具箱 1.Dataset ...
- Spark SQL 之 DataFrame
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...
- Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...
- Spark RDD、DataFrame和DataSet的区别
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类 ...
- 转】Spark SQL 之 DataFrame
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...
- Spark学习之路(八)—— Spark SQL 之 DataFrame和Dataset
一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame AP ...
随机推荐
- PyQt的Layout的比例化分块。
一. QGridLayout: // 列比 第0列与第1列之比为 1:2 layout2p1 -> setColumnStretch(0, 1); layout2p1 -> setColu ...
- python 处理抓取网页乱码
python 处理抓取网页乱码问题一招鲜 相信用python的人一定在抓取网页时,被编码问题弄晕过一阵 前几天写了一个测试网页的小脚本,并查找是否包含指定的信息. 在html = urllib2. ...
- 详谈JavaScript 匿名函数及闭包
1.匿名函数函数是JavaScript中最灵活的一种对象,这里只是讲解其匿名函数的用途.匿名函数:就是没有函数名的函数. 1.1 函数的定义,首先简单介绍一下函数的定义,大致可分为三种方式 第一种:这 ...
- jQuery实现鼠标悬停显示提示信息窗口的方法
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Unity中对SQL数据库的操作
在Unity中,我们有时候需要连接数据库来达到数据的读取与储存.而在.NET平台下,ADO.NET为我们提供了公开数据访问服务的类.客户端应用程序可以使用ADO.NET来连接到数据源,并查询,添加,删 ...
- [转]这五种方法前四种方法只支持IE浏览器,最后一个方法支持当前主流的浏览器(火狐,IE,Chrome,Opera,Safari)
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- Spring_day01--Spring的bean管理(xml方式)_属性注入介绍
Spring的bean管理(xml方式) Bean实例化的方式 1 在spring里面通过配置文件 创建对象 2 bean实例化(创建对象)三种方式实现 第一种 使用类的无参数构造创建(重点) Use ...
- Spring_day01--课程安排_Spring概念_IOC操作&IOC底层原理&入门案例_配置文件没有提示问题
Spring_day01 Spring课程安排 今天内容介绍 Spring概念 Spring的ioc操作 IOC底层原理 IOC入门案例 配置文件没有提示问题 Spring的bean管理(xml方式) ...
- 剑指 offer set 28 实现 Singleton 模式
singleton 模式又称单例模式, 它能够保证只有一个实例. 在多线程环境中, 需要小心设计, 防止两个线程同时创建两个实例. 解法 1. 能在多线程中工作但效率不高 public sealed ...
- java基础---->final关键字的使用
这里介绍一些java基础关于final的使用,文字说明部分摘自java语言规范.心甘情愿这四个字,透着一股卑微,但也有藏不住的勇敢. Final关键字的说明 一.关于final变量规范说明 .A fi ...