2654: tree

Description

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。

Input

第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。

Output

一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。

Sample Input

2 2 1
0 1 1 1
0 1 2 0

Sample Output

2

HINT

原数据出错,现已更新 by liutian,但未重测---2016.6.24

Source

【分析】

  嗯?我想不到的题。。如果不断给所有白色边加上同一个值,跑MST(边权相同先选白色边),那么选取的白色边的数量显然是不升的,就这样,最后减掉need*add就好了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 50010
#define Maxm 100010
#define INF 0x7fffffff int n,m,k; int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,c,cc,p,next;
}t[Maxm*];
int first[Maxn],len; void ins(int x,int y,int c,int p)
{
t[++len].x=x;t[len].y=y;t[len].cc=t[len].c=c;t[len].p=p;
t[len].next=first[x];first[x]=len;
} bool cmp(node x,node y)
{
if(x.c==y.c) return x.p<y.p;
return x.c<y.c;
} int fa[Maxn];
int ffa(int x)
{
if(fa[x]!=x) fa[x]=ffa(fa[x]);
return fa[x];
} int tot,now;
void check(int x)
{
tot=;now=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=len;i++) if(!t[i].p) t[i].c=t[i].cc+x;
sort(t+,t++len,cmp);
for(int i=;i<=len;i++)
{
int x=t[i].x,y=t[i].y;
if(ffa(x)!=ffa(y))
{
fa[ffa(x)]=ffa(y);
if(!t[i].p) tot++;
now+=t[i].c;
}
}
} int ffind(int l,int r)
{
int ans=INF;
while(l<=r)
{
int mid=(l+r)>>;check(mid);
if(tot>=k) ans=now-k*mid,l=mid+;
else r=mid-;
}
return ans;
} int main()
{
scanf("%d%d%d",&n,&m,&k);
len=;
memset(first,,sizeof(first));
int cnt=;
for(int i=;i<=m;i++)
{
int x,y,c,p;
scanf("%d%d%d%d",&x,&y,&c,&p);
x++;y++;
if(p==) cnt++;
ins(x,y,c,p);ins(y,x,c,p);
}
int ans=ffind(-,);
if(ans==INF) ans=;
printf("%d\n",ans);
return ;
}

2017-03-08 21:26:50

【BZOJ 2654】 MST的更多相关文章

  1. 【BZOJ 2654】tree

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  2. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

  3. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  4. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  5. LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego

    [bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...

  6. 【BZOJ 2753】 2753: [SCOI2012]滑雪与时间胶囊 (分层最小树形图,MST)

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2457  Solved: 859 Descriptio ...

  7. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  8. 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3940  Solved: 1736 Description ...

  9. 【BZOJ 2132】圈地计划 && 【7.22Test】计划

    两种版本的题面 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土 ...

随机推荐

  1. 【BZOJ】3173: [Tjoi2013]最长上升子序列(树状数组)

    [题意]给定ai,将1~n从小到大插入到第ai个数字之后,求每次插入后的LIS长度. [算法]树状数组||平衡树 [题解] 这是树状数组的一个用法:O(n log n)寻找前缀和为k的最小位置.(当数 ...

  2. js设置html区域隐藏和显示

    if(message != "指派") { document.getElementById("appoint").style.display="non ...

  3. c++ virtual总结

    virtual-关键字用于修饰成员函数时,有以下特性 1.用于修饰的基类的成员函数,被修饰的基类成员函数-其派生类的同名成员函数也默认带有virtual 关键字2.当virtual 用于修饰析构函数( ...

  4. 2008 Round 1A C Numbers (矩阵快速幂)

    题目描述: 请输出(3+√5)^n整数部分最后3位.如果结果不超过2位,请补足前导0. 分析: 我们最容易想到的方法肯定是直接计算这个表达式的值,但是这样的精度是不够的.朴素的算法没有办法得到答案.但 ...

  5. JFinal向客户端渲染图片的方法

    JFinal提供了好几种方便的render但是不知道为啥就是没有提供直接渲染图片的render,如果我们直接在Controller的方法中往输入流中写的话是还是会有默认的render生效的,比如下面这 ...

  6. npm的常用命令

    npm install <name>安装nodejs的依赖包 例如npm install express 就会默认安装express的最新版本,也可以通过在后面加版本号的方式安装指定版本, ...

  7. 一键切图 PS 动作 【收藏】

    使用方法 一键切图动作.zip 1. 下载动作 2. 打开PS 动作 窗口,导入动作 3. 选中图层后 点击 F2 一键切图 详情看原文链接 原文链接

  8. struts2 constant详解

    <!-- 指定Web应用的默认编码集,相当于调用 HttpServletRequest的setCharacterEncoding方法 -->        <constant nam ...

  9. Test plan

    Options for Test Strategy: 1. Regular test: all the planned test cases will be executed 2. Extented ...

  10. linux配置samba服务【原创】

    转载请注明出处http://www.cnblogs.com/paul8339/p/7509981.html 需求,windows服务器访问linux的共享文件,需要linux服务器安装并配置samba ...