选择问题(选择数组中第K小的数)
由排序问题可以引申出选择问题,选择问题就是选择并返回数组中第k小的数,如果把数组全部排好序,在返回第k小的数,也能正确返回,但是这无疑做了很多无用功,由上篇博客中提到的快速排序,稍稍修改下就可以以较小的时间复杂度返回正确结果。
代码如下:
#include<iostream>
using namespace std; #define Cutoff 3 int A[13] = {81,94,11,96,12,35,17,95,28,58,41,75,15}; void Swap(int &a, int &b)
{
int c;
c = a;
a = b;
b = c;
} void InsetionSort (int A[], int N) //插入排序
{
int j, p;
int Tmp;
for (p = 1; p < N; p++)
{
Tmp = A[p];
for(j = p; j > 0 && A[j - 1] > Tmp; j--)
A[j] = A[j - 1];
A[j] = Tmp;
}
} int Median (int A[],int Left, int Right) //实现三数中值分割,选取枢纽元
{
int Center = (Left + Right ) / 2; if(A[Left] > A[Center])
Swap(A[Left] , A[Center]);
if(A[Left] > A[Right])
Swap(A[Left] , A[Right]);
if(A[Center] > A[Right])
Swap(A[Center] , A[Right]); /* A[Left] <= A[Center] <= A[Right] */
Swap(A[Center], A[Right - 1]); //把枢纽元放在倒数第二个
return A[Right - 1];
} void Qselete (int A[], int k, int Left, int Right)
{
int i, j;
int Pivot;
if(Left + Cutoff <= Right)
{
Pivot = Median(A,Left,Right);
i = Left; j = Right - 1;
for( ; ; )
{
while(A[++i] < Pivot) { }
while(A[--j] > Pivot) { }
if(i < j)
Swap(A[i], A[j]);
else
break;
}
Swap(A[i], A[Right - 1]); // 恢复枢纽元的位置
if(k <= i)
Qselete (A, k, Left, i -1);
else
Qselete (A, k, i + 1, Right);
}
else
InsetionSort (A + Left, Right - Left + 1);
} int Quick_Sort (int A[], int k, int N)
{
Qselete (A, k - 1, 0, N - 1);
return A[k - 1];
} int main ()
{
cout << Quick_Sort (A , 3, 13) << endl;
return 0;
}
思想很不错,值得学习。
夜深了,,,
唉,失恋的人就是矫情,写个博客还得装逼一下
选择问题(选择数组中第K小的数)的更多相关文章
- #7 找出数组中第k小的数
「HW面试题」 [题目] 给定一个整数数组,如何快速地求出该数组中第k小的数.假如数组为[4,0,1,0,2,3],那么第三小的元素是1 [题目分析] 这道题涉及整数列表排序问题,直接使用sort方法 ...
- 每天一道算法题(32)——输出数组中第k小的数
1.题目 快速输出第K小的数 2.思路 使用快速排序的思想,递归求解.若键值位置i与k相等,返回.若大于k,则在[start,i-1]中寻找第k大的数.若小于k.则在[i+1,end]中寻找第k+st ...
- 求一个数组中第K小的数
面试南大夏令营的同学说被问到了这个问题,我的第一反应是建小顶堆,但是据他说用的是快排的方法说是O(n)的时间复杂度, 但是后来经过我的考证,这个算法在最坏的情况下是O(n^2)的,但是使用堆在一般情况 ...
- 找轮转后的有序数组中第K小的数
我们可以通过二分查找法,在log(n)的时间内找到最小数的在数组中的位置,然后通过偏移来快速定位任意第K个数. 此处假设数组中没有相同的数,原排列顺序是递增排列. 在轮转后的有序数组中查找最小数的算法 ...
- 【medium】4. Median of Two Sorted Arrays 两个有序数组中第k小的数
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
- 数组中第K小的数字(Google面试题)
http://ac.jobdu.com/problem.php?pid=1534 题目1534:数组中第K小的数字 时间限制:2 秒 内存限制:128 兆 特殊判题:否 提交:1120 解决:208 ...
- [经典算法题]寻找数组中第K大的数的方法总结
[经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26 字体:[大 中 小] 打印复制链接我要评论 今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...
- 每天一道算法题目(18)——取等长有序数组的上中位数和不等长有序数组的第k小的数
1.取上中位数 题目: 给定两个有序数组arr1和arr2,两个数组长度都为N,求两个数组中所有数的上中位数.要求:时间复杂度O(logN). 例如: arr1 = {1, ...
- 查找数组中第k大的数
问题: 查找出一给定数组中第k大的数.例如[3,2,7,1,8,9,6,5,4],第1大的数是9,第2大的数是8-- 思考:1. 直接从大到小排序,排好序后,第k大的数就是arr[k-1]. 2. ...
随机推荐
- 【前端学习笔记03】JavaScript对象相关方法及封装
//Object.create()创建对象 var obj = Object.create({aa:1,bb:2,cc:'c'}); obj.dd = 4; console.log(obj.cc); ...
- 【.Net+数据库】Unable to convert MySQL date/time value to System.DateTime
C#读取MySql时,如果存在字段类型为date/datetime时的可能会出现以下问题“Unable to convert MySQL date/time value to System.DateT ...
- 【明哥报错簿】之【HTTP Status 500 - Servlet.init() for servlet mvc-dispatcher threw exception】
报错:java.lang.NoClassDefFoundError: /factory/config/EmbeddedValueResolver spring或者jdk的问题,解决办法:spring3 ...
- P1065 作业调度方案
题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j−k表示一个 ...
- Win10 安装 Linux 子系统
Win10 安装 Linux 子系统 因为最近要使用Linux搭服务器,但是用远程的话延迟很烦,用双系统切换很麻烦,用虚拟机又会有点卡,刚好Windows10最近更新了正式版的WSL(windows下 ...
- 【转】.gitignore失效的解决办法
转自:http://foreverdo.diandian.com/post/2012-09-20/40038034798 How to make .gitignore works? Just got ...
- 序列计数(count)
Portal -->broken qwq Description 给你一个长度为\(n\)的序列,序列中的每个数都是不超过\(m\)的正整数,求满足以下两个条件的序列数量: 1.序列中至 ...
- TopCoder SRM420 Div1 500pt RedIsGood
桌面上有R 张红牌和B 张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1 美元,黑牌则付出1 美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. R,B ≤ 100000. 输 ...
- windows下php扩展存在但无法加载的问题
1.可能存在多个php环境,扩展没有放对地方 2.扩展和php版本不对应,例如,php是32位,扩展是64位:或者php是nts版本,但是扩展不是nts版本.
- Nginx基本功能极速入门
http://xxgblog.com/2015/05/17/nginx-start/ 本文主要介绍一些Nginx的最基本功能以及简单配置,但不包括Nginx的安装部署以及实现原理.废话不多,直接开始. ...