Select a.val,b.val From a [Left|Right|Full Outer] Join b On (a.key==b.key);

现有两张表:sales 列出了人名及其所购商品的 ID;things 列出商品的 ID 和名称:

hive> select * from sales;
OK
Joe 2
Hank 4
Ali 0
Eve 3
Hank 2
Time taken: 0.085 seconds, Fetched: 5 row(s)
hive> select * from things;
OK
2 Tie
4 Coat
3 Hat
1 Scarf
Time taken: 0.069 seconds, Fetched: 4 row(s)

1.内连接

Hive只支持等值连接,这意味着在 ON 关键字后的表达式中只能使用等号。具体JAVA-API实现详见:MR案例:内连接

hive> select sales.*,things.*
> from sales JOIN things ON(sales.id = things.id);
Joe 2 2 Tie
Hank 4 4 Coat
Eve 3 3 Hat
Hank 2 2 Tie

此外还可以在Where子句中指定连接条件。

hive> select sales.*,things.*
> from sales,things
> where sales.id = things.id;
OK
Joe 2 2 Tie
Hank 4 4 Coat
Eve 3 3 Hat
Hank 2 2 Tie

单个的连接用一个 MR 作业实现。但是,如果多个连接的连接条件中使用了相同的列,那么平均每个连接可以至少用一个 MR 作业来实现。可以在查询前使用 Explain关键字 来查看 Hive将为某个查询使用多少个 MR 作业:【此部分在以后详述

hive> explain
> select sales.*,things.*
> from sales join things on (sales.id=things.id);

2.外连接

外连接可以让你找到连接表中不能匹配的数据行。前面的内连接,【Ali】那一行没有出现在输出中。因为她所购买商品的ID没有在things表中出现。具体JAVA-API实现详见MR案例:外连接

  左外连接:就可以显示左边表的所有数据行:T_Name1 LEFT OUTER JOIN T_Name2 ON ()

hive> select sales.*,things.*
> from sales LEFT OUTER JOIN things ON(sales.id = things.id);
OK
Joe 2 2 Tie
Hank 4 4 Coat
Ali 0 NULL NULL
Eve 3 3 Hat
Hank 2 2 Tie
Time taken: 13.387 seconds, Fetched: 5 row(s)

  右外连接:T_Name1 RIGHT OUTER JOIN T_Name2 ON ()

hive> select sales.*,things.*
> from sales RIGHT OUTER JOIN things ON(sales.id = things.id);
OK
Joe 2 2 Tie
Hank 2 2 Tie
Hank 4 4 Coat
Eve 3 3 Hat
NULL NULL 1 Scarf
Time taken: 14.54 seconds, Fetched: 5 row(s)

  全外连接:T_Name1 FULL OUTER JOIN T_Name2 ON ()

hive> select sales.*,things.*
> from sales FULL OUTER JOIN things ON(sales.id = things.id);
OK
Ali 0 NULL NULL
NULL NULL 1 Scarf
Hank 2 2 Tie
Joe 2 2 Tie
Eve 3 3 Hat
Hank 4 4 Coat
Time taken: 44.671 seconds, Fetched: 6 row(s)

  半连接:T_Name1 LEFT SEMI JOIN T_Name2 ON () 

hive> select * from things
> where things.id in
> (select id from sales);
OK
2 Tie
4 Coat
3 Hat
Time taken: 15.633 seconds, Fetched: 3 row(s)

  In查询可以转化为 半连接查询。必须遵循一个限制:右表(sales)只能在ON子句中出现。

hive> select * from things
> LEFT SEMI JOIN sales ON(sales.id=things.id);
OK
2 Tie
4 Coat
3 Hat
Time taken: 13.169 seconds, Fetched: 3 row(s)

3.Map-side Join 具体JAVA-API实现详见MR案例:Map-Join

  • Join操作在 map 阶段完成,因此无需 reduce 阶段
  • 适合 一个大表,一个小表 的 Join 操作
  • 思想:小表复制到各个节点上,并加载到内存中;而对大表进行分片,每个分片与小表完成 Join 操作
select /*+ mapjoin(things) */ sales.*,things.*
from sales join things on sales.id=things.id; //等同于
select sales.*,things.*
from sales join things on sales.id=things.id;
  • hive 0.6 的时候默认认为写在select 后面的是大表,前面的是小表,或者使用 /*+mapjoin(map_table) */ 手工进行设定。
  • hive 0.7 以后这个计算是自动完成,设置 hive.auto.convert.join=true ,hive会自动判断哪个是小表,哪个是大表。判断小表的依据是hive.smalltable.filesize=25000000L(默认是25M),当小表超过这个大小,hive会自动转化成common join,即reduce-join。

4.Reduce-side Join 具体JAVA-API实现详见MR案例:Reduce-Join

  • Join操作在reduce task中完成 【默认的join方式】
  • 适合两个大表连接操作
  • 思想:map端按照连接字段进行hash,reduce 端完成连接操作

5.用于多于2个表的Join(有区别)

SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key1);

如果 Join 的 key 相同,不管有多少个表,都会则会合并为一个 Map-Reduce

SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2);

如果 Join 的条件不相同,Map-Reduce 的任务数目和 Join 操作的次数是相对应.(本例2次)

6.Join每次MR任务的逻辑

reducer 会缓存 join 序列中除了最后一个表的所有表的记录, 再通过最后一个表将结果序列化到文件系统。 这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:

 SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key1);

使用 1 次MR任务,reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果。

  SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2);

使用 2 次MR任务,第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。

Hive查询Join的更多相关文章

  1. Hive的join表连接查询的一些注意事项

    Hive支持的表连接查询的语法: join_table: table_reference JOIN table_factor [join_condition] | table_reference {L ...

  2. hive的join查询

    hive的join查询 语法 join_table: table_reference [INNER] JOIN table_factor [join_condition] | table_refere ...

  3. 【HIVE】(3)联合查询join、时间戳函数、字符串函数

    数据 t_join1.txt 1,a,1 2,b,2 3,c,4 t_join2.txt 1,2a 2,2b 3,2c 建表.导入: create table t_join1(id int, name ...

  4. hive:join操作

    hive的多表连接,都会转换成多个MR job,每一个MR job在hive中均称为Join阶段.按照join程序最后一个表应该尽量是大表,因为join前一阶段生成的数据会存在于Reducer 的bu ...

  5. Hive 中Join的专题---Join详解

    1.什么是等值连接? 2.hive转换多表join时,如果每个表在join字句中,使用的都是同一个列,该如何处理? 3.LEFT,RIGHT,FULL OUTER连接的作用是什么? 4.LEFT或RI ...

  6. Hive中Join的类型和用法

    关键字:Hive Join.Hive LEFT|RIGTH|FULL OUTER JOIN.Hive LEFT SEMI JOIN.Hive Cross Join Hive中除了支持和传统数据库中一样 ...

  7. Hive 基本语法操练(五):Hive 的 JOIN 用法

    Hive 的 JOIN 用法 hive只支持等连接,外连接,左半连接.hive不支持非相等的join条件(通过其他方式实现,如left outer join),因为它很难在map/reduce中实现这 ...

  8. hive查询不加分区的一个异常

    今天下午有同事反馈她提交了了一个SQL后,hive 查询就停止响应了. 我看了下,发现hiveserver确实hug住了.听过查看日志,发现了一个牛逼的SQL, 这个SQL很简单: select a. ...

  9. hive的join优化

    “国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友 ...

随机推荐

  1. Struts2中获取Web元素request、session、application对象的四种方式

    我们在学习web编程的时候,一般都是通过requet.session.application(servletcontext)进行一系列相关的操作,request.session.和applicatio ...

  2. SaaS成熟度模型分级:

    SaaS成熟度模型分级: 根据SaaS应用是否具有可配置性,高性能,可伸缩性的特性,SaaS成熟度模型被分成四级.每一级都比前一级增加三中特性中的一种.   可配置 高性能 可伸缩 Level1 N ...

  3. CentOS中文乱码问题的解决方法

    一.CentOS系统访问 xxx.cn ,发现中文乱码于是用以前的方式:# yum -y install fonts-chinese # yum -y install fonts-ISO8859 Ce ...

  4. lowB三人组算法-冒泡排序-选择排序-插入排序

    冒泡排序 时间复杂度:O(n2)  算法稳定 第一趟,从第一个数开始,相邻两个数比较,大的数交换放后,交换到最后位置得出一个第一大数 第二趟,从第一个数开始,相邻两个数比较,大的数交换放后,交换到倒数 ...

  5. 权限认证与授权(Shrio 框架)

    权限概述 认证: 系统提供的用于识别用户身份的功能, 通常登录功能就是认证功能; -- 让系统知道你是谁 授权: 系统授予用户可以访问哪些功能的证书. -- 让系统知道你能做什么! 常见的权限控制方式 ...

  6. 如何在 windows 配置 libtorch c++ 前端库?

    如何在 windows 配置 libtorch c++ 前端库? 下载 pytorch 已经编译好的库: 此库不带 gpu,主要方便演示.支持 win7 win10 系统. 下载地址:https:// ...

  7. LeetCode_Symmetric Tree

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  8. 解决iOS xcode打包unknown error -1=ffffffffffffffff错误

    # 网上很多文档说重启机器,清除缓存什么的,纯属扯淡,都是相互复制粘贴,经测验在stackoverflow找到以下解决方法,亲测可用security unlock-keychain -p " ...

  9. 微信iOS版更新:可批量管理不常联系的朋友

    iOS版微信更新了v6.5.13版本,在新版本当中微信新增加了可批量管理不常联系的朋友功能,同时在群资料页可以查看最近收到的小程序,不过据网友爆料,腾讯在新的更新日志当中已经删除了“批量管理不常联系的 ...

  10. windows平台mongoDB安装配置

    一.首先安装mongodb 1.官网下载mongoDB:http://www.mongodb.org/downloads,选择windows平台.安装时,一路next就可以了.我安装在了F:\mong ...