http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1363

\[\begin{aligned}
&\sum_{i=1}^n\frac{in}{(i,j)}\\
=&n\sum_{d|n}\sum_{i=1}^{\frac nd}\left[\left(i,\frac nd\right)=1\right]i\\
=&n\left(1+\sum_{d|n,d\neq n}\sum_{i=1}^{\left\lfloor\frac {n}{2d}\right\rfloor}\left[\left(i,\frac nd\right)=1\right]\right)\\
=&n+\frac n2\sum_{d|n,d\neq 1}d\varphi(d)
\end{aligned}
\]

重点是统计\(\sum\limits_{d|n,d\neq 1}d\varphi(d)\)

\[\begin{aligned}
&\sum_{d|n,d\neq 1}d\varphi(d)\\
=&\prod\sum_{j=0}^{c_i}p_i^j\times\varphi\left(p_i^j\right)-1\\
=&\prod\left(1+\sum_{j=1}^{c_i}p_i^{2j-1}\left(p_i-1\right)\right)-1\\
=&\prod\left(1+\frac{p_i^{2c_i+1}-p_i}{p_i+1}\right)-1
\end{aligned}
\]

质因子分解统计就可以了,时间复杂度\(O\left(T\sqrt n\right)\)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int N = 100000;
const int p = 1000000007; bool notp[N + 3];
int T, n, prime[N + 3], num = 0, ni[N + 3]; void Euler_shai() {
for (int i = 2; i <= N; ++i) {
if (!notp[i]) prime[++num] = i;
for (int j = 1; j <= num && prime[j] * i <= N; ++j) {
notp[prime[j] * i] = true;
if (i % prime[j] == 0) break;
}
}
ni[1] = 1;
for (int i = 2; i <= N; ++i)
ni[i] = 1ll * (p - p / i) * ni[p % i] % p;
} int ipow(int a, int b) {
int r = 1, w = a;
while (b) {
if (b & 1) r = 1ll * r * w % p;
w = 1ll * w * w % p;
b >>= 1;
}
return r;
} int cal(int x) {
int ret = 1, ci;
for (int i = 1, pi = 2; i <= num && pi * pi <= x; pi = prime[++i]) {
if (x % pi == 0) {
ci = 1; x /= pi;
while (x % pi == 0) x /= pi, ++ci;
ret = 1ll * ret * (1ll * (ipow(pi, 2 * ci + 1) - pi + p) % p * ni[pi + 1] % p + 1) % p;
}
}
if (x > 1) {
ret = 1ll * ret * ((1ll * x * x % p * x % p - x + p) % p * ipow(x + 1, p - 2) % p + 1) % p;
}
return ret;
} int main() {
Euler_shai(); scanf("%d", &T);
while (T--) {
scanf("%d", &n);
printf("%lld\n", (1ll * n * ni[2] % p * (cal(n) - 1) % p + n) % p);
}
return 0;
}

【51Nod 1363】最小公倍数之和的更多相关文章

  1. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  2. 51nod - 1363 - 最小公倍数之和 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...

  3. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  4. 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举

    1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...

  5. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  6. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  7. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  8. 51nod 1190 最小公倍数之和 V2【莫比乌斯反演】

    参考:http://blog.csdn.net/u014610830/article/details/49493279 这道题做起来感觉非常奇怪啊--头一次见把mu推出来再推没了的-- \[ \sum ...

  9. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

  10. 【学术篇】51nod 1238 最小公倍数之和

    这是一道杜教筛的入(du)门(liu)题目... 题目大意 求 \[ \sum_{i=1}^n\sum_{j=1}^nlcm(i,j) \] 一看就是辣鸡反演一类的题目, 那就化式子呗.. \[ \s ...

随机推荐

  1. 网站开发中很有用的几个 jQuery 地图插件

    下面提到的 jQuery 地图插件不仅仅是提供一个简便的方式来安装一个地图,如果你想在它们之间选择一个放到你的网站上,那么它们还有更多的额外选项来提供更多更全面的功能.大部分的 jQuery 地图插件 ...

  2. 说说asp.net中的异常处理和日志追踪

    关于异常的处理想必大家都了解try{}catch(){}finally{},这里就不再讲了.通过在VS里的"调试"-"异常",在弹出的异常对话框里的Common ...

  3. 微信小程序开发(三)项目目录及文件结构

    第二章我们已经创建了一个Hello WXapplet示例小程序.我们从文件目录结构来了解Hello WXapplet项目的构成. 目录结构显示,在小程序项目的根目录下面包含3个app开头的文件(app ...

  4. 面试C++失败

    到今天,面试已经整整一周,一个offer没有收到,mmp. 无奈,痛苦,迷茫. 以前活的太安逸,太舒适了. 自以为是,异想天开. 要重新振作起来. 要不断学习,保持强大,未来之路才会越走越宽.

  5. javascript中的数组去重

    1.方法一:双层循环,外层循环元素,内层循环做比较,若相同则跳过,不同则加入结果集中,获取没重复的最右侧的值放入数组中 Array.prototype.distinct = function(){ v ...

  6. oracle imp dmp命令

    vi par.txt userid=system/oracle tables=(user.table,...) query="where org_no like 32%" file ...

  7. struct msghdr和struct cmsghdr【转载】

    理解struct msghdr当我第一次看到他时,他看上去似乎是一个需要创建的巨大的结构.但是不要怕.其结构定义如下:struct msghdr {    void         *msg_name ...

  8. ftp--pureftpd1.0.46

    pureftpd的新版本1.0.46安装过程与之前的相同 但是之后的配置,有些许不同 pureftpd安装过程: # cd /usr/local/src # wget # cd pure-1.0.46 ...

  9. HDFS RAID实现方案(转)

    原文链接:http://blog.chinaunix.net/uid-20196318-id-3213700.html 分布式文件系统主要用于解决海量数据存储的问题,如Goolge.Facebook等 ...

  10. [ python ] 接口类和抽象类

    接口类 继承有两种用途:1. 继承基类的方法,并且做出自己的改变或者扩展(代码重用)2. 申明某个子类兼容于某基类,定义一个接口类interface,接口类定义了一些接口名且未实现接口的功能,子类继承 ...